Please Read Me.

Sequences and Series

Welcome to Our Site


I greet you this day,
These are the solutions to WASSCE past questions on Sequences.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and helpful in your passing the Further Mathematics test of WASSCE, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

$ (1.)\:\: AS_n = a + d(n - 1) \\[5ex] (2.)\:\: AS_n = vn + w \:\:where\:\: v = d \:\:and\:\: w = a - d \\[5ex] (3.)\:\: p = a + d(n - 1) \\[5ex] (4.)\:\: SAS_n = \dfrac{n}{2}(a + AS_n) \\[7ex] (5.)\:\: SAS_n = \dfrac{n}{2}(a + p) \\[7ex] (6.)\:\: SAS_n = \dfrac{n}{2}[2a + d(n - 1)] \\[7ex] (7.)\:\: n = \dfrac{2 * SAS_n}{a + p} \\[7ex] (8.)\:\: n = \dfrac{p - a + d}{d} \\[7ex] (9.)\:\: n = \dfrac{-(2a - d) \pm \sqrt{(2a - d)^2 + 8d*SAS_n}}{2d} \\[7ex] (10.)\;\; d = \dfrac{(p - a)(p + a)}{2 * SAS_n - p - a} $


$ (1.)\:\: GS_n = ar^{n - 1} \\[5ex] (2.)\:\: SGS_n = \dfrac{a(r^{n} - 1)}{r - 1} \:\:for\:\: r \gt 1 \\[7ex] (3.)\:\: SGS_n = \dfrac{a(1 - r^{n})}{1 - r} \:\:for\:\: r \lt 1 \\[7ex] (4.)\:\: n = \dfrac{\log{\left[\dfrac{SGS_n(r - 1)}{a} + 1\right]}}{\log r} \\[7ex] (5.)\:\: If\:\:r \lt 1,\:\:the\:\:series\:\:converges\:\:and\:\: S_{\infty} = \dfrac{a}{1 - r} \\[7ex] (6.)\:\: If\:\:r \gt 1,\:\:the\:\:series\:\:diverges \\[5ex] (7.)\:\: If\:\:r = 1,\:\:S_{\infty}\:\:DNE \\[5ex] (8.)\:\: r = \dfrac{S_{\infty} - a}{S_{\infty}} \\[7ex] (9.)\:\: a = S_{\infty}(1 - r) $


$ QS = 1st,\:\:\:\:2nd,\:\:\:3rd,\:\:\:4th,... \\[5ex] QS_n = an^2 + bn + c \\[5ex] (1.)\:\: a = \dfrac{1st + 3rd - 2(2nd)}{2} \\[7ex] (2.)\:\: b = \dfrac{8(2nd) - 5(1st) - 3(3rd)}{2} \\[7ex] (3.)\:\: c = 3(1st) - 3(2nd) + 3rd \\[5ex] (4.)\:\: \therefore QS_n = \dfrac{1st + 3rd - 2(2nd)}{2} * n^2 + \dfrac{8(2nd) - 5(1st) - 3(3rd)}{2} * n + 3(1st) - 3(2nd) + 3rd \\[7ex] The\:\:Left\:\:Hand\:\:Side\:\:must\;\;be\:\:equal\:\:to\;\;the\:\:Right\:\:Hand\:\:Side \\[5ex] (5.)\:\: a + b + c = 1st \\[5ex] (6.)\:\: 4a + 2b + c = 2nd \\[5ex] (7.)\:\: 9a + 3b + c = 3rd \\[5ex] (8.)\:\: 3a + b = 2nd - 1st \\[5ex] (9.)\:\: 8a + 2b = 3rd - 1st $


$ \underline{Triangular\;\;Number\;\;Sequence} \\[3ex] (1.)\:\: TS_n = \dfrac{n(n + 1)}{2} \\[7ex] (2.)\;\; n = \dfrac{\sqrt{8 * TS_n + 1} - 1}{2} \\[7ex] (3.)\:\: TS_n = C(n + 1, 2)...Combinatorics\;\;symbol\;\;for\;\;Combinations \\[5ex] (4.)\;\; STS_n = \dfrac{n(n + 1)(n + 2)}{6} \\[7ex] (5.)\:\: STS_n = C(n + 2, 3)...Combinatorics\;\;symbol\;\;for\;\;Combinations \\[7ex] \underline{Square\;\;Number\;\;Sequence} \\[3ex] (1.)\:\: SS_n = n^2 \\[5ex] (2.)\;\; n = \sqrt{SS_n} \\[5ex] (3.)\;\; SSS_n = \dfrac{n(n + 1)(2n + 1)}{6} \\[7ex] \underline{Cube\;\;Number\;\;Sequence} \\[3ex] (1.)\:\: CS_n = n^3 \\[5ex] (2.)\;\; n = \sqrt[3]{CS_n} \\[5ex] (3.)\;\; SCS_n = \left[\dfrac{n(n + 1)}{2}\right]^2 \\[7ex] (4.)\;\; n = \dfrac{\sqrt{8\sqrt{SCS_n} + 1} - 1}{2} \\[7ex] $


$ \underline{First-Order\;\;Linear\;\;Recurrence\;\;Relation} \\[3ex] (1.)\:\: RS_{n + 1} = r * RS_{n} + a \\[5ex] (2.)\:\: RS_{n + 1} = \dfrac{RS_1 * r^n(r - 1) + a(r^n - 1)}{r - 1} \;\;\;for\;\;r \gt 1 \\[7ex] (3.)\;\; RS_{n + 1} = \dfrac{RS_1 * r^n(1 - r) + a(1 - r^n)}{1 - r} \;\;\;for\;\;r \lt 1 \\[7ex] \underline{Fibonacci\;\;Sequence} \\[3ex] (1.)\;\; \phi = \dfrac{1 + \sqrt{5}}{2} \\[7ex] (2.)\;\; FS_n = \dfrac{\sqrt{5}}{5}\left[\left(\dfrac{1 + \sqrt{5}}{2}\right)^n - \left(\dfrac{1 - \sqrt{5}}{2}\right)^n\right] \\[7ex] (3.)\;\; FS_n = \dfrac{\sqrt{5}}{5}\left[\phi^n - \left(\dfrac{1 - \sqrt{5}}{2}\right)^n\right] \\[7ex] (4.)\;\; SFS_n = \dfrac{\sqrt{5}}{5}\left[\dfrac{\phi^3(\phi^{n - 1} - 1) + [(\phi - 1)(1 - \phi^2)][(1 - \phi)^{n - 1} - 1]}{\phi(\phi - 1)}\right] + 1 $

(1.) Find the third term of the exponential sequence (G.P)

$(\sqrt{2} - 1),\:\:(3 - 2\sqrt{2}),\:\:...$


$ a = \sqrt{2} - 1 \\[3ex] r = \dfrac{3 - 2\sqrt{2}}{\sqrt{2} - 1} \\[5ex] GS_3 = ar^2 \\[3ex] = (\sqrt{2} - 1) * \left(\dfrac{3 - 2\sqrt{2}}{\sqrt{2} - 1}\right)^2 \\[5ex] = (\sqrt{2} - 1) * \left(\dfrac{3 - 2\sqrt{2}}{\sqrt{2} - 1}\right) * \left(\dfrac{3 - 2\sqrt{2}}{\sqrt{2} - 1}\right) \\[5ex] = (3 - 2\sqrt{2}) * \dfrac{3 - 2\sqrt{2}}{\sqrt{2} - 1} \\[5ex] = \dfrac{(3 - 2\sqrt{2})(3 - 2\sqrt{2})}{\sqrt{2} - 1} \\[5ex] = \dfrac{9 - 6\sqrt{2} - 6\sqrt{2} + (2\sqrt{2})^2}{\sqrt{2} - 1} \\[5ex] = \dfrac{9 - 12\sqrt{2} + 4(2)}{\sqrt{2} - 1} \\[5ex] = \dfrac{9 - 12\sqrt{2} + 8}{\sqrt{2} - 1} \\[5ex] = \dfrac{17 - 12\sqrt{2}}{\sqrt{2} - 1} \\[5ex] Rationalize \\[3ex] = \dfrac{17 - 12\sqrt{2}}{\sqrt{2} - 1} * \dfrac{\sqrt{2} + 1}{\sqrt{2} + 1} \\[5ex] = \dfrac{17\sqrt{2} + 17 - 12(2) - 12\sqrt{2}}{(\sqrt{2})^2 - 1^2} \\[5ex] = \dfrac{17\sqrt{2} + 17 - 24 - 12\sqrt{2}}{2 - 1} \\[5ex] = \dfrac{5\sqrt{2} - 7}{1} \\[5ex] = 5\sqrt{2} - 7 $
(2.) The 3rd and 6th terms of a geometric progression (G.P) are 2 and 54 respectively.
Find the:
(a.) common ratio
(b.) first term
(c.) sum of the first ten terms, correct to the nearest whole number.


$ (a.) \\[3ex] GP_n = ar^{n - 1} \\[3ex] GP_3 = ar^{3 - 1} = ar^2 = 2...eqn.(1) \\[3ex] GP_6 = ar^{6 - 1} = ar^5 = 54...eqn.(2) \\[3ex] eqn.(2) \div eqn.(1) \\[3ex] \implies \dfrac{ar^5}{ar^2} = \dfrac{54}{2} \\[5ex] r^3 = 27 \\[3ex] r = \sqrt[3]{27} \\[3ex] r = 3 \\[3ex] (b.) \\[3ex] From\:\:eqn.(1) \\[3ex] ar^2 = 2 \\[3ex] a(3^2) = 2 \\[3ex] a(9) = 2 \\[3ex] a = \dfrac{2}{9} \\[5ex] (c.) \\[3ex] r \gt 1 \\[3ex] \therefore SGP_n = \dfrac{a(r^{n} - 1)}{r - 1} \:\:for\:\: r \gt 1 \\[5ex] SGP_n = \dfrac{a(r^{n} - 1)}{r - 1} \\[5ex] SGP_{10} = \dfrac{\dfrac{2}{9}\left(3^{10} - 1\right)}{3 - 1} \\[7ex] = \dfrac{\dfrac{2}{9}\left(59049 - 1\right)}{2} \\[7ex] = \dfrac{\dfrac{2}{9}(59048)}{2} \\[7ex] = \dfrac{2}{9}(59048) \div \dfrac{2}{1} \\[5ex] = \dfrac{2}{9}(59048) * \dfrac{1}{2} \\[5ex] = \dfrac{59048}{9} \\[5ex] = 6560.888889 \\[3ex] SGP_{10} \approx 6561 $
(3.) The sum of the second and third terms of a Geometric Progression (G.P) is 48
If the sum of the third and fourth terms is 144, find the first term of the progression.


$ GS_n = ar^{n - 1} \\[3ex] GS_2 = ar^{2 - 1} = ar^1 = ar \\[3ex] GS_3 = ar^{3 - 1} = ar^2 \\[3ex] GS_4 = ar^{4 - 1} = ar^3 \\[3ex] GS_2 + GS_3 = 48 \\[3ex] \implies ar + ar^2 = 48 \\[3ex] \implies ar(1 + r) = 48...eqn.(1) \\[3ex] GS_3 + GS_4 = 144 \\[3ex] \implies ar^2 + ar^3 = 144 \\[3ex] \implies ar^2(1 + r) = 144...eqn.(2) \\[3ex] eqn.(2) \div eqn.(1) \implies \\[3ex] \dfrac{ar^2(1 + r)}{ar(1 + r)} = \dfrac{144}{48} \\[5ex] r = 3 \\[3ex] From\;\;eqn.(1) \\[3ex] ar(1 + r) = 48 \\[3ex] a(3)(1 + 3) = 48 \\[3ex] a(3)(4) = 48 \\[3ex] 12a = 48 \\[3ex] a = \dfrac{48}{12} \\[5ex] a = 4 $
(4.) The fourth and sixth terms of a Geometric Progression (G.P) are 54 and 486 respectively.
If r > 0, find the third term.


$ GS_n = ar^{n - 1} \\[3ex] GS_4 = ar^{4 - 1} = ar^3 = 54...eqn.(1) \\[3ex] GS_6 = ar^{6 - 1} = ar^5 = 486...eqn.(2) \\[3ex] eqn.(2) \div eqn.(1) \\[3ex] \implies \dfrac{ar^5}{ar^3} = \dfrac{486}{54} \\[5ex] r^2 = 9 \\[3ex] r = \pm \sqrt{9} \\[3ex] r = \pm 3 \\[3ex] But:\;\; r \gt 0...from\;\;the\;\;question \\[3ex] \therefore r = 3 \\[3ex] From\;\;eqn.(1) \\[3ex] ar^3 = 54 \\[3ex] a = \dfrac{54}{r^3} \\[5ex] a = \dfrac{54}{3^3} \\[5ex] a = \dfrac{54}{27} \\[5ex] a = 2 \\[3ex] \underline{Third\;\;term} \\[3ex] GP_3 \\[3ex] = ar^{3 - 1} \\[3ex] = ar^2 \\[3ex] = 2 * (3)^2 \\[3ex] = 2(9) \\[3ex] = 18 $
(5.) The sum of the first twelve terms of an Arithmetic Progression is 168
If the third term is 7, find the values of the common difference and the first term.


$ SAS_n = \dfrac{n}{2}[2a + d(n - 1)] \\[5ex] SAS_{12} = \dfrac{12}{2}[2a + d(12 - 1)] \\[5ex] 168 = 6[2a + 11d] \\[3ex] \dfrac{168}{6} = 2a + 11d \\[3ex] 28 = 2a + 11d \\[3ex] 2a + 11d = 28...eqn.(1) \\[3ex] AS_n = a + d(n - 1) \\[3ex] AS_3 = a + d(3 - 1) \\[3ex] 7 = a + 2d \\[3ex] a + 2d = 7...eqn.(2) \\[3ex] Multiply\;\;eqn.(2)\;\;by\;\;2 \\[3ex] 2 * eqn.(2) \implies 2(a + 2d) = 2(7) \\[3ex] 2a + 4d = 14...eqn.(3) \\[3ex] eqn.(1) - eqn.(3) \implies \\[3ex] (2a + 11d) - (2a + 4d) = 28 - 14 \\[3ex] 2a + 11d - 2a - 4d = 14 \\[3ex] 7d = 14 \\[3ex] d = \dfrac{14}{7} \\[5ex] d = 2 \\[3ex] From\;\;eqn.(2) \\[3ex] a + 2d = 7 \\[3ex] a = 7 - 2d \\[3ex] a = 7 - 2(2) \\[3ex] a = 7 - 4 \\[3ex] a = 3 $
(6.) How many terms of the series $-3 - 1 + 1 + ...$ add up to 165?


$ a = -3 \\[3ex] d = -1 - (-3) \\[3ex] d = -1 + 3 \\[3ex] d = 2 \\[3ex] SAS_n = 165...because\;\;of\;\;"add\;\;up\;\;to" \\[3ex] n = ? \\[3ex] SAS_n = \dfrac{n}{2}[2a + d(n - 1)] \\[5ex] 165 = \dfrac{n}{2}[2(-3) + 2(n - 1)] \\[5ex] 165 = \dfrac{n}{2}[-6 + 2n - 2] \\[5ex] 165 = \dfrac{n}{2}[2n - 8] \\[5ex] 2(165) = n(2n - 8) \\[3ex] 330 = 2n^2 - 8n \\[3ex] 2n^2 - 8n = 330 \\[3ex] 2n^2 - 8n - 330 = 0 \\[3ex] Divide\;\;all\;\;terms\;\;by\;\;2...to\;\;simplify \\[3ex] Work\;\;with\;\;smaller\;\;numbers\;\;when\;\;possible \\[3ex] n^2 - 4n - 165 = 0 \\[3ex] Factor\;\;Quadratic\;\;Trinomial \\[3ex] (n + 11)(n - 15) = 0 \\[3ex] n + 11 = 0 \;\;OR\;\; n - 15 = 0 \\[3ex] n = -11 \;\;OR\;\; n = 15 \\[3ex] number\;\;of\;\;terms\;\;cannot\;\;be\;\;negative \\[3ex] \implies n = 15 $
(7.) The $nth$ term of an Arithmetic Progression (A.P) is given by $U_n = n^2\log 5$
Find the sum of the first n terms of the Arithmetic Progression in terms of $\log 5$


$ U_n = n^2\log 5 \\[3ex] \underline{first\;\;term} \\[3ex] \implies n = 1 \\[3ex] U_1 = 1^2\log 5 \\[3ex] = 1 * \log 5 \\[3ex] = \log 5 \\[3ex] U_1 = a = \log 5 \\[3ex] \underline{second\;\;term} \\[3ex] Necessary\;\;so\;\;we\;\;can\;\;the\;\;common\;\;difference \\[3ex] U_2 = 2^2 * \log 5 \\[3ex] U_2 = 4\log 5 \\[3ex] \underline{common\;\;difference} \\[3ex] d = U_2 - U_1 \\[3ex] d = 4\log 5 - \log 5 \\[3ex] d = 3\log 5 \\[3ex] \underline{Sum\;\;of\;\;the\;\;first\;\;n\;\;terms} \\[5ex] SAS_n = \dfrac{n}{2}[2a + d(n - 1)] \\[5ex] = \dfrac{n}{2}[2(\log 5) + 3\log 5(n - 1)] \\[5ex] = \dfrac{n}{2}[2\log 5 + 3n\log 5 - 3\log 5] \\[5ex] = \dfrac{n}{2}[3n\log 5 - \log 5] \\[5ex] = \dfrac{n\log 5}{2}[3n - 1] $
(8.) If the sixth term of an Arithmetic Progression (A.P) is 37 and the sum of the first six terms is 147, find the:
(a.) first term
(b.) sum of the first fifteen terms


$ AS_n = a + d(n - 1) \\[3ex] AS_6 = a + d(6 - 1) \\[3ex] AS_6 = a + 5d \\[3ex] AS_6 = 37 \\[3ex] \implies a + 5d = 37...eqn.(1) \\[3ex] SAS_n = \dfrac{n}{2}(a + AS_n) \\[5ex] SAS_6 = \dfrac{6}{2}(a + AS_6) \\[5ex] SAS_6 = 3(a + 37) \\[5ex] SAS_6 = 147 \\[3ex] \implies 3(a + 37) = 147 \\[3ex] Divide\;\;both\;\;sides\;\;by\;\;3...to\;\;simplify \\[3ex] a + 37 = 49...eqn.(2) \\[5ex] (a.) \\[3ex] a = 49 - 37 \\[3ex] a = 12 \\[5ex] (b.) \\[3ex] Subst.\;\;a = 12 \;\;into\;\;eqn.(1) \\[3ex] From\;\;eqn.(1) \\[3ex] 12 + 5d = 37 \\[3ex] 5d = 37 - 12 \\[3ex] 5d = 25 \\[3ex] d = \dfrac{25}{5} \\[5ex] d = 5 \\[3ex] AS_{15} = a + 14d \\[3ex] = 12 + 14(5) \\[3ex] = 12 + 70 \\[3ex] = 82 \\[3ex] SAS_{15} = \dfrac{n}{2}(a + AS_{15}) \\[5ex] = \dfrac{15}{2}(12 + 82) \\[5ex] = \dfrac{15}{2}(94) \\[5ex] = 15(47) \\[3ex] = 705 $
(9.) The sum of the first n terms of a sequence is given by $S_n = \dfrac{5n^2}{2} + \dfrac{5n}{2}$

Write down the first four terms of the sequence and find an exprsssion for the nth term.


We can solve this question in at least two ways.
Use any method you prefer.

We are given the sum of the first $n$ terms
However, we do not know the kind of sequence
So, let us try to determine the kind of sequence by testing some numbers
Let us find the sum of the first one term; sum of the first two terms; sum of the first three terms; sum of the first four terms
Then, we can find the four terms of the sequence
And determine the fifth term and the sum of the first five terms
And verify that sum by finding the sum of the first five terms.

$ \underline{First\:\:Method} \\[3ex] Let\:\:the\:\:terms\:\:be\:\:a, b, c, d, e \\[3ex] S_1 = sum\:\:of\:\:the\:\:first\:\:1\:\:term \\[3ex] S_2 = sum\:\:of\:\:the\:\:first\:\:2\:\:terms \\[3ex] S_3 = sum\:\:of\:\:the\:\:first\:\:3\:\:terms \\[3ex] S_4 = sum\:\:of\:\:the\:\:first\:\:4\:\:terms \\[3ex] S_5 = sum\:\:of\:\:the\:\:first\:\:5\:\:terms \\[3ex] S_n = \dfrac{5n^2}{2} + \dfrac{5n}{2} \\[5ex] S_1 = \dfrac{5(1)^2}{2} + \dfrac{5(1)}{2} \\[5ex] = \dfrac{5(1)}{2} + \dfrac{5}{2} \\[5ex] = \dfrac{5}{2} + \dfrac{5}{2} \\[5ex] = \dfrac{5 + 5}{2} \\[5ex] = \dfrac{10}{2} \\[5ex] S_1 = 5 \\[3ex] \implies \\[3ex] a = 5 \\[3ex] S_2 = \dfrac{5(2)^2}{2} + \dfrac{5(2)}{2} \\[5ex] = \dfrac{5(4)}{2} + \dfrac{10}{2} \\[5ex] = \dfrac{20}{2} + 5 \\[5ex] = 10 + 5 \\[3ex] S_2 = 15 \\[3ex] \implies \\[3ex] a + b = 15 \\[3ex] 5 + b = 15 \\[3ex] b = 15 - 5 \\[3ex] b = 10 \\[3ex] S_3 = \dfrac{5(3)^2}{2} + \dfrac{5(3)}{2} \\[5ex] = \dfrac{5(9)}{2} + \dfrac{15}{2} \\[5ex] = \dfrac{45}{2} + \dfrac{15}{2} \\[5ex] = \dfrac{45 + 15}{2} \\[5ex] = \dfrac{60}{2} \\[5ex] S_3 = 30 \\[3ex] \implies \\[3ex] a + b + c = 30 \\[3ex] 15 + c = 30 \\[3ex] c = 30 - 15 \\[3ex] c = 15 \\[3ex] a, b, c = 5, 10, 15...is\:\:an\:\:arithmetic\:\:sequence \\[3ex] But,\:\:we\:\:can\:\:still\:\:explore\:\:more \\[3ex] S_4 = \dfrac{5(4)^2}{2} + \dfrac{5(4)}{2} \\[5ex] = \dfrac{5(16)}{2} + \dfrac{20}{2} \\[5ex] = 5(8) + 10 \\[3ex] = 40 + 10 \\[3ex] S_4 = 50 \\[3ex] \implies \\[3ex] a + b + c + d = 50 \\[3ex] 30 + d = 50 \\[3ex] d = 50 - 30 \\[3ex] d = 20 \\[3ex] a, b, c, d = 5, 10, 15, 20 \\[3ex] a, b, c, d, e = 5, 10, 15, 20, 25 \\[3ex] a + b + c + d + e = 5 + 10 + 15 + 20 + 25 = 75 \\[3ex] Verify \\[3ex] S_5 = \dfrac{5(5)^2}{2} + \dfrac{5(5)}{2} \\[5ex] = \dfrac{5(25)}{2} + \dfrac{25}{2} \\[5ex] = \dfrac{125}{2} + \dfrac{25}{2} \\[5ex] = \dfrac{125 + 25}{2} \\[5ex] = \dfrac{150}{2} \\[5ex] S_5 = 75...verified \\[3ex] \therefore AP:\:\: 5, 10, 15, 20 \\[3ex] a = 5 \\[3ex] d = 10 - 5 = 5 \\[3ex] AP_n = a + d(n - 1) \\[3ex] AP_n = 5 + 5(n - 1) \\[3ex] AP_n = 5 + 5n - 5 \\[3ex] AP_n = 5n \\[3ex] \underline{Second\:\:Method} \\[3ex] S_n = \dfrac{5n^2}{2} + \dfrac{5n}{2} \\[5ex] S_n = \dfrac{n}{2}(5n + 5) \\[5ex] S_n = \dfrac{n}{2}(5 + 5n) \\[5ex] Compare\:\:to\:\:the\:\:Sum\:\:of\:\:the\:\:first\:\:n\:\:terms\:\:of\:\:an\:\:A.P \\[3ex] S_n = \dfrac{n}{2}(a + AP_n) \\[5ex] \therefore a = 5 \\[3ex] \therefore AP_n = 5n $
(10.)


(11.) (a.) If $3, x, y, 18$ are in Arithmetic Progression (A.P), find the values of x and y
(b.) (i.) The sum of the second and third terms of a geometric progression is six times the fourth term.
Find the two possible values of the common ratio.
(ii.) If the second term is 8 and the common ratio is positive, find the first six terms.


$ (a.) \\[3ex] AP:\:\: 3, x, y, 18 \\[3ex] d = x - 3 \\[3ex] d = y - x \\[3ex] d = 18 - y \\[3ex] d = d \\[3ex] \implies \\[3ex] x - 3 = y - x \\[3ex] 2x - 3 = y \\[3ex] y = 2x - 3...eqn.(1) \\[3ex] \implies \\[3ex] y - x = 18 - y \\[3ex] 2y - x = 18 \\[3ex] Substitute\:\: (2x - 3)\:\:for\:\:y \\[3ex] 2(2x - 3) - x = 18 \\[3ex] 4x - 6 - x = 18 \\[3ex] 3x - 6 = 18 \\[3ex] 3x = 18 + 6 \\[3ex] 3x = 24 \\[3ex] x = \dfrac{24}{3} \\[5ex] x = 8 \\[3ex] Substitute\:\:x = 8\:\:in\:\:eqn.(1) \\[3ex] y = 2x - 3 \\[3ex] y = 2(8) - 3 \\[3ex] y = 16 - 3 \\[3ex] y = 13 \\[3ex] AP:\:\: 3, 8, 13, 18 \\[5ex] (b.) \\[3ex] (i.) \\[3ex] GP_n = ar^{n - 1} \\[3ex] GP_2 = ar \\[3ex] GP_3 = ar^2 \\[3ex] GP_4 = ar^3 \\[3ex] GP_2 + GP_3 = 6 * GP_4 \\[3ex] ar + ar^2 = 6(ar^3) \\[3ex] a(r + r^2) = 6ar^3 \\[3ex] Divide\:\:both\:\:sides\:\:by\:\:a \\[3ex] r + r^2 = 6r^3 \\[3ex] 0 = 6r^3 - r^2 - r \\[3ex] 6r^3 - r^2 - r = 0 \\[3ex] r(6r^2 - r - 1) = 0 \\[3ex] Factor\:\: 6r^2 - r - 1 \\[3ex] 6r^2 + 2r - 3r - 1 \\[3ex] 2r(3r + 1) - 1(3r + 1) \\[3ex] (3r + 1)(2r - 1) \\[3ex] \implies \\[3ex] r(3r + 1)(2r - 1) = 0 \\[3ex] r = 0 \:\:OR \\[3ex] 3r + 1 = 0 \\[3ex] 3r = 0 - 1 \\[3ex] 3r = -1 \\[3ex] r = -\dfrac{1}{3} \:\:OR \\[5ex] 2r - 1 = 0 \\[3ex] 2r = 0 + 1 \\[3ex] 2r = 1 \\[3ex] r = \dfrac{1}{2} \\[5ex] r = -\dfrac{1}{3},0,\dfrac{1}{2} \\[5ex] r \ne 0 \\[3ex] \therefore r = -\dfrac{1}{3},\dfrac{1}{2} \\[5ex] (ii.) \\[3ex] r \:\:is\:\:positive \\[3ex] \implies \\[3ex] r = \dfrac{1}{2} \\[5ex] GP_2 = ar = 8 \\[3ex] a = 8 \div r \\[3ex] a = 8 \div \dfrac{1}{2} \\[5ex] a = 8 * \dfrac{2}{1} \\[5ex] a = 16 \\[3ex] GP_3 = ar^2 = ar * r = GP_2 * r = 8 * \dfrac{1}{2} = 4 \\[5ex] GP_4 = GP_3 * r = 4 * \dfrac{1}{2} = 2 \\[5ex] GP_5 = GP_4 * r = 2 * \dfrac{1}{2} = 1 \\[5ex] GP_6 = GP_5 * r = 1 * \dfrac{1}{2} = \dfrac{1}{2} \\[5ex] GP:\:\: 16, 8, 4, 2, 1, \dfrac{1}{2} $
(12.)


(13.)


(14.)


(15.)


(16.)


(17.)


(18.)


(19.)


(20.)






Top




(21.)


(22.)


(23.)


(24.)


(25.)


(26.)


(27.)


(28.)


(29.)


(30.)


(31.)


(32.)


(33.)


(34.)


(35.)


(36.)


(37.)


(38.)


(39.)


(40.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.