Please Read Me.

Mensuration

Welcome to Our Site


I greet you this day,

For the Classic ACT exam:
The ACT Mathematics test is a timed exam...60 questions in 60 minutes
This implies that you have to solve each question in one minute.
Each of the first 20 questions (less challenging) will typically take less than a minute a solve.
Each of the next 20 questions (medium challenging) may take about a minute to solve.
Each of the last 20 questions (more challenging) may take more than a minute to solve.
The goal is to maximize your time.
You use the time saved on the questions you solve in less than a minute to solve questions that will take more than a minute.
So, you should try to solve each question correctly and timely.
So, it is not just solving a question correctly, but solving it correctly on time.
Please ensure you attempt all ACT questions.
There is no negative penalty for a wrong answer.
Also: please note that unless specified otherwise, geometric figures are drawn to scale. So, you can figure out the correct answer by eliminating the incorrect options.
Other suggestions are listed in the solutions/explanations as applicable.

These are the solutions to the ACT past questions on the topics in Mensuration.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and if any of these resources were helpful in your passing the Mathematics test of the ACT, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Formulas

Right Triangle

$ perpendicular\:\:height = height \\[3ex] Area = \dfrac{1}{2} * base * height \\[5ex] height = \dfrac{2 * Area}{base} \\[5ex] base = \dfrac{2 * Area}{height} \\[5ex] hypotenuse^2 = height^2 + base^2...Pythagorean\:\:Theorem \\[3ex] hypotenuse = \sqrt{height^2 + base^2} \\[3ex] height = \sqrt{hypotenuse^2 - base^2} \\[3ex] base = \sqrt{hypotenuse^2 - height^2} \\[3ex] Perimeter = hypotenuse + height + base \\[3ex] Area = \dfrac{1}{2} * height * base * \sin (hypotenuseAngle) \\[5ex] Area = \dfrac{1}{2} * height * hypotenuse * \sin (baseAngle) \\[5ex] Area = \dfrac{1}{2} * base * hypotenuse * \sin (heightAngle) \\[5ex] Semiperimeter = \dfrac{height + base + hypotenuse}{2} \\[5ex] Semiperimeter - height = firstdifference \\[3ex] Semiperimeter - base = seconddifference \\[3ex] Semiperimeter - hypotenuse = thirddifference \\[3ex] Area = \sqrt{Semiperimeter * firstdifference * seconddifference * thirddifference}...Hero's\:\:Formula\:\:or\:\:Heron's\:\:Formula \\[5ex] hypotenuse = {Perimeter^2 - 4 * Area}{2 * Perimeter} \\[5ex] base = \dfrac{(Perimeter - hypotenuse) \pm Math.sqrt((hypotenuse - Perimeter)^2 - 8 * Area)}{2} \\[5ex] height = \dfrac{2 * Area}{base} $


Triangle

$ Perimeter = firstside + secondside + thirdside \\[5ex] Area = \dfrac{1}{2} * firstside * secondside * \sin (thirdAngle) \\[5ex] Area = \dfrac{1}{2} * firstside * thirdside * \sin (secondAngle) \\[5ex] Area = \dfrac{1}{2} * secondside * thirdside * \sin (firstAngle) \\[5ex] Semiperimeter = \dfrac{firstside + secondside + thirdside}{2} \\[5ex] Semiperimeter - firstside = firstdifference \\[3ex] Semiperimeter - secondside = seconddifference \\[3ex] Semiperimeter - thirdside = thirddifference \\[3ex] Area = \sqrt{Semiperimeter * firstdifference * seconddifference * thirddifference}...Hero's\:\:Formula\:\:or\:\:Heron's\:\:Formula \\[5ex] \underline{Cosine\:\:Law} \\[3ex] firstside^2 = secondside^2 + thirdside^2 - 2 * secondside * thirdside * \cos (firstAngle) \\[3ex] secondside^2 = firstside^2 + thirdside^2 - 2 * firstside * thirdside * \cos (secondAngle) \\[3ex] thirdside^2 = firstside^2 + secondside^2 - 2 * firstside * secondside * \cos (thirdAngle) \\[5ex] firstAngle = \cos^{-1} \left(\dfrac{secondside^2 + thirdside^2 - firstside^2}{2 * secondside * thirdside}\right) \\[5ex] secondAngle = \cos^{-1} \left(\dfrac{firstside^2 + thirdside^2 - secondside^2}{2 * firstside * thirdside}\right) \\[5ex] thirdAngle = \cos^{-1} \left(\dfrac{firstside^2 + secondside^2 - thirdside^2}{2 * firstside * secondside}\right) \\[7ex] \underline{\text{Area of a Triangle given the vertices}} \\[3ex] \text{Let the vertices be:} \\[3ex] Vertex\;1:\;\;(x_1, y_1) \\[4ex] Vertex\;2:\;\;(x_2, y_2) \\[4ex] Vertex\;3:\;\;(x_3, y_3) \\[4ex] Area = \dfrac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| $


Insribed Triangle (Circumscribed Circle)

$ Circumradius = \dfrac{firstside \cdot secondside \cdot thirdside}{4 \cdot Area} $


Square

$ side = length = width = height \\[3ex] Area = side^2 \\[3ex] side = \sqrt{Area} \\[3ex] Perimeter = 4 * side \\[3ex] side = \dfrac{Perimeter}{4} \\[5ex] diagonal = side * \sqrt{2} \\[3ex] side = \dfrac{diagonal * \sqrt{2}}{2} \\[5ex] Area = \dfrac{Perimeter^2}{16} \\[5ex] Perimeter = 4 * \sqrt{Area} \\[3ex] Area = \dfrac{diagonal^2}{2} \\[5ex] diagonal = \sqrt{2 * Area} \\[3ex] Perimeter = 2 * diagonal * \sqrt{2} \\[3ex] diagonal = \dfrac{Perimeter * \sqrt{2}}{4} $


Rectangle

$ Area = length * width \\[3ex] length = \dfrac{Area}{width} \\[5ex] width = \dfrac{Area}{length} \\[5ex] Area = \dfrac{(length * Perimeter) - (2 * length^2)}{2} \\[5ex] Area = \dfrac{(width * Perimeter) - (2 * width^2)}{2} \\[5ex] Perimeter = 2(length + width) \\[3ex] length = \dfrac{Perimeter - 2 * width}{2} \\[5ex] width = \dfrac{Perimeter - 2 * length}{2} \\[5ex] Perimeter = \dfrac{2(length^2 + Area)}{length} \\[5ex] Perimeter = \dfrac{2(width^2 + Area)}{width} \\[5ex] diagonal = \sqrt{length^2 + width^2} \\[4ex] length = \sqrt{diagonal^2 - width^2} \\[4ex] width = \sqrt{diagonal^2 - length^2} \\[4ex] diagonal = \dfrac{\sqrt{length^4 + Area^2}}{length} \\[5ex] diagonal = \dfrac{\sqrt{width^4 + Area^2}}{width} \\[5ex] diagonal = \dfrac{\sqrt{(Perimeter^2) + (5 * length^2) - (4 * Perimeter * length)}}{2} \\[5ex] diagonal = \dfrac{\sqrt{(Perimeter^2) + (5 * width^2) - (4 * Perimeter * width)}}{2} $


Circle

$ Area = A \\[3ex] Circumference = C \\[3ex] Radius = r \\[3ex] Diameter = d \\[3ex] d = 2r \\[3ex] r = \dfrac{d}{2} \\[5ex] A = \pi r^2 \\[3ex] A = \dfrac{\pi d^2}{4} \\[5ex] C = 2\pi r \\[3ex] C = \pi d \\[3ex] r = \dfrac{\sqrt{A\pi}}{\pi} \\[5ex] r = \dfrac{C}{2\pi} \\[5ex] d = \dfrac{2\sqrt{A\pi}}{\pi} \\[5ex] r = \dfrac{C}{\pi} \\[5ex] A = \dfrac{C^2}{4\pi} \\[5ex] C = 2\sqrt{A\pi} $


Cube

6 square faces
12 edges

$ edge = side = length = width = height \\[3ex] Surface\:\:Area = 6 * edge^2 \\[3ex] edge = \sqrt{\dfrac{Surface\:\:Area}{6}} \\[5ex] Volume = edge^3 \\[3ex] edge = \sqrt[3]{Volume} \\[3ex] Volume = \dfrac{edge * Surface\:\: Area}{6} \\[5ex] edge = \dfrac{6 * Volume}{Surface\:\:Area} \\[5ex] Surface\:\:Area = \dfrac{6 * Volume}{edge} \\[5ex] Volume = \dfrac{Surface\:\:Area * \sqrt{6 * Surface\:\:Area}}{36} \\[5ex] edge = \dfrac{diagonal * \sqrt{3}}{3} \\[5ex] diagonal = \sqrt{3} * edge \\[3ex] Surface\:\:Area = 2 * diagonal^2 \\[3ex] diagonal = \dfrac{\sqrt{2 * Surface\:\:Area}}{2} \\[5ex] Volume = \dfrac{diagonal^3 * \sqrt{3}}{9} \\[5ex] diagonal = \sqrt{3} * \sqrt[3]{Volume} $


Cuboid (Right Rectangular Prism)

$ Volume = Length \cdot Width \cdot Height \\[3ex] $


Right Cone

Curved Surface Area = Lateral Surface Area
Height = Perpendicular Height

$ Volume\:\:of\:\:Cone = \dfrac{1}{3} * Volume\:\:of\:\:Cylinder \\[5ex] Lateral\:\:Surface\:\:Area = LSA \\[3ex] Base\:\:Area = BA \\[3ex] Total\:\:Surface\:\:Area = TSA \\[3ex] Volume = V \\[3ex] Diameter = d \\[3ex] Radius = r \\[3ex] Height = h \\[3ex] Slant Height = l \\[3ex] r = \dfrac{d}{2} \\[5ex] d = 2r \\[3ex] l = \sqrt{h^2 + r^2} \\[3ex] l = \dfrac{\sqrt{4h^2 + d^2}}{2} \\[5ex] h = \sqrt{l^2 - r^2} \\[3ex] h = \dfrac{\sqrt{4l^2 - d^2}}{2} \\[5ex] r = \sqrt{l^2 - h^2} \\[3ex] d = 2 * \sqrt{l^2 - h^2} \\[3ex] BA = \pi r^2 \\[3ex] r = \dfrac{\sqrt{BA * \pi}}{\pi} \\[5ex] BA = \dfrac{\pi d^2}{4} \\[5ex] d = \dfrac{2\sqrt{BA * \pi}}{\pi} \\[5ex] LSA = \pi rl \\[3ex] LSA = \dfrac{\pi dl}{2} \\[5ex] l = \dfrac{LSA}{\pi r} \\[5ex] LSA = \pi r\sqrt{h^2 + r^2} \\[3ex] h = \dfrac{\sqrt{LSA^2 - \pi^2 r^4}}{\pi r} \\[5ex] TSA = BA + LSA \\[3ex] TSA = \pi r(r + l) \\[3ex] l = \dfrac{TSA - \pi r^2}{\pi r} \\[5ex] TSA = \dfrac{\pi d(d + 2l)}{4} \\[5ex] l = \dfrac{4 * TSA - \pi d^2}{2\pi d} \\[5ex] r = \dfrac{-\pi l \pm \sqrt{\pi^2 l^2 + 4\pi * TSA}}{2\pi} \\[5ex] TSA = \pi r(r + \sqrt{h^2 + r^2}) \\[3ex] h = \dfrac{\sqrt{TSA(TSA - 2\pi r^2)}}{\pi r} \\[5ex] V = \dfrac{BA * h}{3} \\[5ex] V = \dfrac{\pi r^2h}{3} \\[5ex] V = \dfrac{\pi hd^2}{12} \\[5ex] V = \dfrac{\pi h(l^2 - h^2)}{3} \\[5ex] h = \dfrac{3V}{\pi r^2} \\[5ex] r = \dfrac{\sqrt{3V\pi h}}{\pi h} $


Right Cylinder

Curved Surface Area = Lateral Surface Area
Height = Perpendicular Height

$ Volume\:\:of\:\:Cylinder = 3 * Volume\:\:of\:\:Cone \\[3ex] Lateral\:\:Surface\:\:Area = LSA \\[3ex] Base\:\:Area = BA \\[3ex] Total\:\:Surface\:\:Area = TSA \\[3ex] Volume = V \\[3ex] Diameter = d \\[3ex] Radius = r \\[3ex] Height = h \\[3ex] r = \dfrac{d}{2} \\[5ex] d = 2r \\[3ex] LSA = 2\pi rh \\[3ex] r = \dfrac{LSA}{2\pi h} \\[5ex] h = \dfrac{LSA}{2\pi r} \\[5ex] LSA = \pi dh \\[3ex] h = \dfrac{LSA}{\pi d} \\[5ex] d = \dfrac{LSA}{\pi h} \\[5ex] BA = \pi r^2 \\[3ex] r = \dfrac{\sqrt{\pi BA}}{\pi} \\[5ex] r = \dfrac{1}{\pi} * \sqrt{\dfrac{\pi(TSA - 2 * LSA)}{2}} \\[5ex] BA = \dfrac{\pi d^2}{4} \\[5ex] d = \dfrac{2\sqrt{\pi BA}}{\pi} \\[5ex] d = \dfrac{\sqrt{2\pi (TSA - LSA)}}{\pi} \\[5ex] TSA = 2\pi r(r + h) \\[3ex] h = \dfrac{TSA - 2\pi r^2}{2\pi r} \\[5ex] r = \dfrac{-\pi h \pm \sqrt{\pi(\pi h^2 + 2 * TSA)}}{2\pi} \\[5ex] TSA = 2BA + LSA \\[3ex] BA = \dfrac{TSA - LSA}{2} \\[5ex] LSA = TSA - 2BA \\[3ex] TSA = \pi d\left(\dfrac{d + 2h}{2}\right) \\[5ex] h = \dfrac{2 * TSA - \pi d^2}{2\pi d} \\[5ex] d = \dfrac{-\pi h \pm \sqrt{\pi(h^2 + 2 * TSA)}}{\pi} \\[5ex] h = \dfrac{LSA * \sqrt{\pi * BA}}{\pi * BA} \\[5ex] h = \dfrac{LSA}{\sqrt{2\pi(TSA - LSA)}} \\[5ex] BA = \dfrac{LSA^2}{\pi h^2} \\[5ex] BA = \dfrac{(4 * TSA + \pi h^2) \pm h\sqrt{\pi(\pi h^2 - 8 * TSA)}}{8} \\[5ex] LSA = h\sqrt{BA * \pi} \\[3ex] LSA = \dfrac{-\pi h^2 \pm h\sqrt{\pi(\pi h^2 + 8 * TSA)}}{4} \\[5ex] TSA = 2 * BA \pm h\sqrt{\pi * BA} \\[3ex] TSA = \dfrac{LSA(2 * LSA + \pi h^2)}{\pi h^2} \\[5ex] V = \pi r^2h \\[3ex] r = \dfrac{2V}{LSA} \\[5ex] d = \dfrac{4V}{LSA} \\[5ex] r = \dfrac{\sqrt{Vh\pi}}{h\pi} \\[5ex] V = BA * h \\[3ex] BA = \dfrac{V}{h} \\[5ex] h = \dfrac{V}{BA} \\[5ex] h = \dfrac{V}{\pi r^2} \\[5ex] h = \dfrac{4V}{\pi d^2} \\[5ex] V = \dfrac{\pi d^2h}{4} \\[5ex] d = \dfrac{\sqrt{Vh\pi}}2{h\pi} \\[5ex] V = \dfrac{LSA^2}{h\pi} \\[5ex] LSA = \sqrt{Vh\pi} \\[3ex] h = \dfrac{LSA^2}{4V\pi} \\[5ex] V = \dfrac{(h^3\pi + 4 * TSA * h) \pm h^2\sqrt{\pi(h^2\pi + 8 * TSA)}}{8} \\[5ex] TSA = \dfrac{2V + h\sqrt{Vh\pi}}{h} \\[5ex] TSA = \dfrac{2V + 2\pi rh^2}{h} \\[5ex] r = \dfrac{TSA * h - 2V}{2\pi h^2} \\[5ex] d = \dfrac{TSA * h - 2V}{\pi h^2} \\[5ex] h = \dfrac{TSA \pm \sqrt{TSA^2 - 16\pi rV}}{4\pi r} $


Trapezoid

Trapezoid's Midpoint Segment Theorem states that the line segment connecting the nonparallel sides of a trapezoid is parallel to the bases, and it's length is the average of the lengths of the bases.

$ Midline = \dfrac{short\;\;base + long\;base}{2} $

(1.) Yesterday, there was no snow on the ground at 8:00 a.m. when snow began to fall.
Snow fell from 8:00 a.m. to 8:00 p.m. at a constant rate of $\dfrac{3}{4}$ inch per hour.
Kate built a snowman made of 2 spherical snowballs, with the smaller placed on top of the larger.
When she built the snowman, the diameter of the larger snowball was 3 times the diameter of the smaller snowball.
Today, the day after she built the snowman, there is a 50% chance of rain.
If it rains today, then there is a 60% chance that the snowman will melt.
If it does not rain today, then there is a 10% chance the snowman will melt.

When Kate built the snowman, the circumference of the larger snowball was 36 π inches.
When Kate built the snowman, what was the diameter, in inches, of the smaller snowball?

$ F.\;\; 4 \\[3ex] G.\;\; 6 \\[3ex] H.\;\; 12 \\[3ex] J.\;\; 54 \\[3ex] K.\;\; 108 \\[3ex] $

Let the:
diameter of the larger snowball = D
circumference of the larger snowball = C
diameter of the smaller snowball = d

$ \underline{\text{Larger Snowball}} \\[3ex] C = \pi D ...formula \\[3ex] C = 36\pi ...given \\[3ex] C = C \implies \\[3ex] \pi D = 36\pi \\[3ex] D = 36\;inches \\[3ex] \underline{\text{Smaller Snowball}} \\[3ex] 3d = D \\[3ex] d = \dfrac{D}{3} \\[5ex] d = \dfrac{36}{3} \\[5ex] d = 12\;inches $
(2.) A certain rectangle has a width of 6km and a length that is 4km more than 2 times the width.
What is the area, in square kilometers, of this rectangle?

$ F.\;\; 16 \\[3ex] G.\;\; 24 \\[3ex] H.\;\; 32 \\[3ex] J.\;\; 60 \\[3ex] K.\;\; 96 \\[3ex] $

$ width = 6\;km \\[3ex] length = 4 + 2\cdot width \\[3ex] = 4 + 2(6) \\[3ex] = 4 + 12 \\[3ex] = 16\;km \\[3ex] Area = length \cdot width \\[3ex] = 16 \cdot 6 \\[3ex] = 96\;km^2 $
(3.) The table below gives the lengths, widths, and heights, in feet, of 3 right rectangular prisms.
The difference between the volume of Prism A and the volume of Prism B is how many times the volume of Prism C?

Prism Length Width Height
A 4 4 3
B 3 3 4
C 4 3 1


$ F.\;\; 0 \\[3ex] G.\;\; 1 \\[3ex] H.\;\; 5 \\[3ex] J.\;\; 8 \\[3ex] K.\;\; 12 \\[3ex] $

Prism Length Width Height Volume = Length × Width × Height
A 4 4 3 48
B 3 3 4 36
C 4 3 1 12


$ 48 - 36 = what \cdot 12 \\[3ex] 12 = what \cdot 12 \\[3ex] what = 1 $
(4.) A circle with radius 4 centimeters is inscribed in a square, as shown below.
Which of the following represents the area, in square centimeters, of the shaded region?
Number 4

$ A.\;\; 32 - 8\pi \\[3ex] B.\;\; 32 - 16\pi \\[3ex] C.\;\; 32 + 16\pi \\[3ex] D.\;\; 64 - 16\pi \\[3ex] E.\;\; 64 + 16\pi \\[3ex] $

Area of the shaded region = Area of the Square − Area of the Circle

$ \underline{Square} \\[3ex] apothem,\;a = 4\;cm \\[3ex] Length,\;L = 2a = 2(4) = 8\;cm \\[3ex] Area,\;A = L^2 \\[3ex] A = 8^2 \\[3ex] A = 64\;cm^2 \\[5ex] \underline{Circle} \\[3ex] radius,\;r = 4\;cm \\[3ex] Area,\;A = \pi r^2 \\[4ex] A = \pi(4)^2 \\[4ex] A = 16\pi\;cm^2 \\[5ex] \implies \\[3ex] \text{Area of the shaded region} = 64 - 16\pi $
(5.) Josie has decided to make a new lampshade for her bedroom lamp.
She will order materials from a website that offers 4 different print designs and 4 different color schemes that can be used with each design.
The top and bottom edges of Josie’s current lampshade are parallel circles with diameters of length 6 inches and 8 inches, as pictured below.
The centers of the 2 circles are directly above and below one another.

Number 5

(I.) What is the ratio of the area of the circle modeled by the top edge of the lampshade to the area of the circle modeled by the bottom edge of the lampshade?

$ A.\;\; 3:7 \\[3ex] B.\;\; 3:4 \\[3ex] C.\;\; 9:16 \\[3ex] D.\;\; 4:3 \\[3ex] E.\;\; 16:9 \\[5ex] $ (II.) Which of the following 2-dimensional shapes, when rotated about its vertical symmetry line, will form the shape of this lampshade?

A. Circle
B. Octagon
C. Pentagon
D. Rectangle
E. Isosceles trapezoid


(I.) Let:
r be the radius of the circle modeled by the top edge of the lampshade
R be teh radius of the circle modeled by the bottom edge of the lampshade

$ radius = \dfrac{diameter}{2} \\[5ex] Area = \pi radius^2 \\[4ex] r = \dfrac{6}{2} = 3\;in \\[5ex] R = \dfrac{8}{2} = 4\;in \\[5ex] \text{Ratio of the areas} \\[3ex] = \dfrac{\pi (3)^2}{\pi (4)^2} \\[5ex] = \dfrac{9}{16} \\[5ex] = 9 : 16 \\[3ex] $ (II.) The shape of Josie's lampshade is a truncated cone.
When rotated about its vertical symmetry line, the 2-dimensional shape that will form the shape of a truncated cone is the Isosceles trapezoid.
(6.) The base of a right square pyramid has a side length of 20 ft.
The pyramid’s slant height is 15 ft.
What is the total surface area, in square feet, of the pyramid?

$ A.\;\; 550 \\[3ex] B.\;\; 600 \\[3ex] C.\;\; 1,000 \\[3ex] D.\;\; 1,600 \\[3ex] E.\;\; 2,000 \\[3ex] $

The base of a right square pyramid is a square
The base has a side length of 20 ft.
This implies that:
The square has a side length of 20 ft.
This implies that the base area is the area of the square
Base Area, BA = Area of the square = side² = (20)² = 400 square feet

The slant height of the pyramid = 15 ft.
Lateral Surface Area, LSA = 2 × base × slant height
LSA = 2 × 20 × 15 = 600 square feet

Total Surface Area, TSA = BA + LSA
TSA = 400 + 600
TSA = 1000 square feet.
(7.) Tisha is building a wooden drying rack.
The top of the rack is in the shape of a trapezoid.
The trapezoid's bases are 24 inches long and 38 inches long, respectively.
Tisha will add a brace that joins the midpoints of the trapezoid's 2 nonparallel sides to support her drying rack, as shown in the figure below.
How many inches long will the brace be?

Number 7

$ A.\;\; 26 \\[3ex] B.\;\; 28 \\[3ex] C.\;\; 31 \\[3ex] D.\;\; 32 \\[3ex] E.\;\; 33.5 \\[3ex] $

$ Midline = \dfrac{short\;\;base + long\;base}{2} ...Midpoint\;\;Segment\;\;Theorem \\[5ex] = \dfrac{24 + 38}{2} \\[5ex] = \dfrac{62}{2} \\[5ex] = 31\;inches $
(8.) A rectangular field that measures 300 meters by 175 meters is to be completely fenced along its perimeter.
Given that fencing sells for $2.05 per meter, what will the fencing for the field cost?

$ A.\;\; \$973.75 \\[3ex] B.\;\; \$1,332.50 \\[3ex] C.\;\; \$1,405.00 \\[3ex] D.\;\; \$1,588.75 \\[3ex] E.\;\; \$1,947.50 \\[3ex] $

$ \underline{Rectangular\;\;Field} \\[3ex] Length,\;L = 300\;m \\[3ex] Width,\;W = 175\;m \\[3ex] Perimeter = P \\[3ex] P = 2(L + W) \\[3ex] = 2(300 + 175) \\[3ex] = 2(475) \\[3ex] = 950\;m \\[5ex] \underline{Fencing\;\;Cost} \\[3ex] 950\meters\;\;@\;\;\$2.05\;\;per\;\;meter \\[3ex] = 950(2.05) \\[3ex] = \$1947.50 $
(9.) The length of Rectangle A is equal to the length of Rectangle B.
The width of Rectangle A is 3 inches less than the width of Rectangle B.
If it can be determined, how many inches less is the perimeter of Rectangle A than the perimeter of Rectangle B?

$ F.\;\; 3 \\[3ex] G.\;\; 6 \\[3ex] H.\;\; 9 \\[3ex] J.\;\; 12 \\[3ex] K.\;\;\text{Cannot be determined from the given information} \\[3ex] $

Rectangle A Rectangle B
$ Length = L_A \\[4ex] Width = W_A \\[4ex] Perimeter = P_A \\[5ex] L_A = L_B \\[4ex] W_A = W_B - 3 \\[4ex] P_A = 2(L_A + W_A) \\[4ex] = 2(L_B + W_B - 3) \\[4ex] = 2L_B + 2W_B - 6 $ $ Length = L_B \\[4ex] Width = W_B \\[4ex] Perimeter = P_B \\[5ex] P_B = 2(L_B + W_B) \\[4ex] = 2L_B + 2W_B $
How many inches less is the perimeter of Rectangle A than the perimeter of Rectangle B?

$ P_B - P_A \\[4ex] = (2L_B + 2W_B) - (2L_B + 2W_B - 6) \\[4ex] = 2L_B + 2W_B - 2L_B - 2W_B + 6 \\[4ex] = 6 $
(10.) The figure below shows 3 rectangles where a, b, c, d, e, and f are side lengths measured in meters.
Which of the following expressions must give the area of the shaded region, in square meters?

Number 10

$ A.\;\; ab - cd \\[3ex] B.\;\; ab - ef \\[3ex] C.\;\; cd - ef \\[3ex] D.\;\; cd + ef \\[3ex] E.\;\; ab - cd + ef \\[3ex] $

$ \text{Area of a rectangle} = Length \cdot Width \\[3ex] \text{Area of the 1st (inner) rectangle},A_1 = f \cdot e = ef \\[4ex] \text{Area of the 2nd rectangle}, A_2 = d \cdot c = cd \\[4ex] \text{Area of the shaded region} = A_2 - A_1 \\[4ex] = cd - ef $
(11.) The vertices of $\triangle PQR$ are given in the standard (x, y) coordinate plane below.
What is the area, in square coordinate units, of $\triangle PQR$?

Number 11

$ F.\;\; 6 \\[3ex] G.\;\; 10 \\[3ex] H.\;\; 12 \\[3ex] J.\;\; 20 \\[3ex] K.\;\; 48 \\[3ex] $

$ P:\;Vertex\;1:\;\;(x_1, y_1) = (8, 12) \\[4ex] Q:\;Vertex\;2:\;\;(x_2, y_2) = (10, 8) \\[4ex] R:\;Vertex\;3:\;\;(x_3, y_3) = (8, 2) \\[4ex] x_1 = 8 ~~~~~~~~~~~~~~~~ y_1 = 12 \\[4ex] x_2 = 10 ~~~~~~~~~~~~~~~ y_2 = 8 \\[4ex] x_3 = 8 ~~~~~~~~~~~~~~~~~ y_3 = 2 \\[4ex] Area = \dfrac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| \\[4ex] = \dfrac{1}{2}|8(8 - 2) + 10(2 - 12) + 8(12 - 8)| \\[5ex] = \dfrac{1}{2}|8(6) + 10(-10) + 8(4)| \\[5ex] = \dfrac{1}{2}|48 - 100 + 32| \\[5ex] = \dfrac{1}{2}|-20| \\[5ex] = \dfrac{1}{2} \cdot 20 \\[5ex] = 10\;square\;\;units $

Calculator 11
(12.) Which of the following equations expresses a relationship between D, the length of the diagonal of the square shown below, and S, the length of a side of the square?

Number 12

$ A.\;\; D = S \\[3ex] B.\;\; D = \sqrt{2}S \\[3ex] C.\;\; D = \sqrt{3}S \\[3ex] D.\;\; D = 2S \\[3ex] E.\;\; D = 3S \\[3ex] $

The four sides of the square are congruent
Each interior angle in a square is a right angle

Number 12

$ \underline{\triangle ABC} \\[3ex] hyp^2 = leg^2 + leg^2 ...\text{Pythagorean Theorem} \\[4ex] D^2 = S^2 + S^2 \\[4ex] D^2 = 2S^2 \\[4ex] D = \sqrt{2S^2} \\[4ex] D = \sqrt{2} \cdot \sqrt{S^2} \\[4ex] D = \sqrt{2}S $
(13.) The dimensions of a hallway floor are shown below.
Each pair of adjacent walls meets at a right angle.
Teresa plans to completely carpet this entire hallway floor.
At a cost of $2 per square foot, how much will carpeting this hallway floor cost?

Number 13

$ A.\;\; \$ 95 \\[3ex] B.\;\; \$ 150 \\[3ex] C.\;\; \$ 190 \\[3ex] D.\;\; \$ 285 \\[3ex] E.\;\; \$ 300 \\[3ex] $

15 feet − 4 feet = 11 feet
Hence we have two regions: Region 1 and Region 2

NUmber 13

$ \text{Area of Region 1 } = 4(10) = 40\;feet^2 \\[4ex] \text{Area of Region 2 } = 11(5) = 55\;feet^2 \\[4ex] \text{Area of Hallway Floor} = \text{Area of Region 1} + \text{Area of Region 2} \\[3ex] = 40 + 55 \\[3ex] = 95\;feet^2 \\[5ex] \text{Cost of Carpeting Entire Hallway Floor } @\;\;\$2\;\; \text{per square feet } \\[3ex] = 95\;square\;\;feet \cdot \dfrac{\$2}{1\;square\;\;foot} \\[5ex] = \$ 190 $
(14.) Each side of square ABCD has a length of 48 m.
A certain rectangle whose area is equal to the area of ABCD has a width of 12 m.
What is the length, in meters, of the rectangle?

$ F.\;\; 36 \\[3ex] G.\;\; 48 \\[3ex] H.\;\; 60 \\[3ex] J.\;\; 144 \\[3ex] K.\;\; 192 \\[3ex] $

$ \underline{Square\;\;ABCD} \\[3ex] Area = Length^2 = 48^2 \;m^2 \\[5ex] \underline{Rectangle} \\[3ex] Area = Length * Width \\[3ex] \text{Let the length of the rectangle } = L_R \\[4ex] Area = L_R \cdot 12 \\[5ex] \text{Area of the Rectangle = Area of the Square} \\[3ex] \implies \\[3ex] L_R \cdot 12 = 48^2 \\[4ex] L_R = \dfrac{48 \cdot 48}{12} \\[5ex] = 4 \cdot 48 \\[3ex] = 192\;m $
(15.) Hoshi is building a circular pond in a square section of her backyard.
The square section measures 20feet on each side.
The pond touches all 4 sides of the square section.
Approximately what is the total area, in square feet, of the region inside this square section but outside the circular pond?

$ A.\;\; 86 \\[3ex] B.\;\; 126 \\[3ex] C.\;\; 314 \\[3ex] D.\;\; 337 \\[3ex] E.\;\; 714 \\[3ex] $

Let us represent this information diagrammatically

Number 15

O is the center of the circle.
The region inside this square section but outside the circular pond is the shaded region.
The question is asking us to calculate the area of the shaded region.

$ \underline{\text{Square Section}} \\[3ex] \text{Length of the square} = 20\;feet \\[3ex] Area = Length^2 \\[4ex] = 20^2 \\[3ex] = 400\;feet^2 \\[5ex] \underline{\text{Circular Pond}} \\[3ex] \text{radius of the circle} = \dfrac{1}{2} \cdot 20 = 10\;feet ...\text{radius of an inscribed circle = half the length of the square} \\[5ex] Area = \pi * radius^2 \\[4ex] = \pi * 10^2 \\[4ex] = 100\pi \\[5ex] \underline{\text{Area of the shaded region}} \\[3ex] = \text{Area of the Square Section} - \text{Area of the Circular Pond} \\[3ex] = 400 - 100\pi \\[3ex] = 85.84073464 \\[3ex] \approx 86\;feet^2 ...\text{to the nearest whole number} $
(16.) A piece of chocolate candy enclosing an almond in the center is made in a rectangular mold that has inside dimensions 4 cm, 3 cm, and 2 cm.
If the volume of the almond is 2 cubic centimeters, what is the maximum volume, in cubic centimeters, of the chocolate in the piece of candy?

$ A.\;\; 7 \\[3ex] B.\;\; 12 \\[3ex] C.\;\; 16 \\[3ex] D.\;\; 22 \\[3ex] E.\;\; 24 \\[3ex] $

The rectangular mold is a rectangular prism.
The chocolate candy is made in the rectangular prism.
The almond is in the center of the chocolate candy.
This implies that the volume of the chocolate candy is the volume of the almond subtracted from the volume of the rectangular prism

$ \text{Volume of the Rectangular Prism} \\[3ex] = Length \cdot Width \cdot Height \\[3ex] = 4 \cdot 3 \cdot 2 \\[3ex] = 24\;cm^3 \\[5ex] \text{Volume of the Almond} = 2\;cm^3 \\[5ex] \text{Volume of the Chocolate Candy} = 24 - 2 \\[3ex] = 22\;cm^3 $
(17.) Rafael wrapped a gift box l inches long, w inches wide, and h inches high.
He tied a decorative rope around it and used an extra 6 inches for a tie at the top, as shown below.
On both the top and the bottom, he formed right angles where the rope crossed.
About how many inches of decorative rope did Rafael use?

Number 17

$ F.\;\; 2l + 2w + 2h \\[3ex] G.\;\; 2l + 2w + 2h + 6 \\[3ex] H.\;\; 2l + 2w + 4h + 6 \\[3ex] J.\;\; 2l + 4w + 2h + 6 \\[3ex] K.\;\; 4l + 2w + 2h + 6 \\[3ex] $

$ \text{Decorative Rope} \\[5ex] \underline{\text{Top and Bottom of Box}} \\[3ex] Length:\;\; 2 \cdot l = 2l\;inches \\[3ex] Width:\;\; 2 \cdot w = 2w\;inches \\[5ex] \underline{\text{4 Sides of the Box}} \\[3ex] Height:\;\; 4 \cdot h = 4h\;inches \\[5ex] \underline{\text{Extra 6 inches for a tie at the top}} \\[3ex] Tie:\;\; 6\;inches \\[5ex] \text{Perimeter of Decorative Rope} = (2l + 2w + 4h + 6)\;inches $
(18.) In a certain triangle that has an area of 12 square inches, the length of one altitude is $\dfrac{2}{3}$ the length of its corresponding base.
What is the length of that base, in inches?

$ A.\;\; 2 \\[3ex] B.\;\; 3 \\[3ex] C.\;\; 6 \\[3ex] D.\;\; 9 \\[3ex] E.\;\; \sqrt{18} \\[3ex] $

Assume the altitude to be the perpendicular height, h
base = b
Area = A

$ A = 12\;inches^2 \\[4ex] b = b \\[3ex] h = \dfrac{2}{3}b \\[5ex] A = \dfrac{1}{2}\cdot b \cdot h \\[5ex] 12 = \dfrac{1}{2} \cdot b \cdot \dfrac{2}{3}b \\[5ex] \dfrac{b^2}{3} = 12 \\[5ex] b^2 = 3(12) \\[3ex] b = +\sqrt{36}...\text{The negative square root is discarded} \\[3ex] \text{This is because the length cannot be negative} \\[3ex] b = 6\;inches $
(19.) Rectangular pyramids A (left) and B (right) are shown below with dimensions given in feet.

Number 19

Let a and b be the volumes of A and B, respectively.
Which of the following equations is true?

$ F.\;\; a = \dfrac{1}{3}b \\[5ex] G.\;\; a = \dfrac{2}{3}b \\[5ex] H.\;\; a = b \\[3ex] J.\;\; a = \dfrac{3}{2}b \\[5ex] K.\;\; a = 3b \\[3ex] $

$ \underline{Rectangular\;\;Pyramid} \\[3ex] Volume = \dfrac{1}{3} \cdot Length \cdot Width \cdot \perp Height \\[5ex] a = \dfrac{1}{3} \cdot \dfrac{12}{x} \cdot x \cdot 12 \\[5ex] a = 48\;cubic\;feet \\[5ex] b = \dfrac{1}{3} \cdot 12 \cdot x \cdot \dfrac{12}{x} \\[5ex] b = 48\;cubic\;feet \\[5ex] a = b $
(20.) A restaurant currently has an outdoor rectangular dining section measuring 30 feet by 40 feet.
The shorter sides will be increased by 10 feet each, resulting in a larger rectangular dining section.
What is the positive difference, in square feet, between the areas of the resulting and current dining sections?

$ F.\;\; 100 \\[3ex] G.\;\; 300 \\[3ex] H.\;\; 400 \\[3ex] J.\;\; 500 \\[3ex] K.\;\; 600 \\[3ex] $

$ \underline{\text{Current Dining Section}} \\[3ex] \text{Rectangular: 30 feet by 40 feet} \\[3ex] Area = 30(40) = 1200\;square\;\;feet \\[5ex] \underline{\text{Resulting Dining Section}} \\[3ex] \text{shorter sides} = 30 feet \\[3ex] \text{increase by 10 feet each} = 30 + 10 = 40\;feet \\[3ex] \implies \\[3ex] \text{Square: 40 feet by 40 feet} \\[3ex] Area = 40(40) = 1600\;square\;\;feet \\[5ex] \text{Positive Difference Between the Areas} \\[3ex] = 1600 - 1200 \\[3ex] = 400\;square\;\;feet. $




Top




(21.) What is the area, in square millimeters, of a triangle whose side lengths are 5 millimeters, 5 millimeters, and 6 millimeters?

A. 6
B. 12
C. 15
D. 25
E. 30


We can solve this question using at least two approaches.
Use any approach you prefer.

$ \text{1st Approach: Hero's Formula} \\[3ex] side1, a = 5\;mm \\[3ex] side2, b = 5\;mm \\[3ex] side3, c = 6\;mm \\[3ex] semiperimeter, s = \dfrac{a + b + c}{2} \\[5ex] = \dfrac{5 + 5 + 6}{2} \\[5ex] = \dfrac{16}{2} \\[5ex] = 8\;mm \\[5ex] difference1 = semiperimeter - side1 \\[3ex] = s - a \\[3ex] = 8 - 5 \\[3ex] = 3\;mm \\[5ex] difference2 = semiperimeter - side2 \\[3ex] = s - b \\[3ex] = 8 - 5 \\[3ex] = 3\;mm \\[5ex] difference3 = semiperimeter - side3 \\[3ex] = s - c \\[3ex] = 8 - 6 \\[3ex] = 2\;mm \\[5ex] Area, A = \sqrt{s(s - a)(s - b)(s - c)} \\[4ex] = \sqrt{8(3)(3)(2)} \\[4ex] = \sqrt{144} \\[4ex] = 12\;mm^2 \\[5ex] \text{2nd Approach: Formula and Theorem} \\[3ex] $ To do the 2nd approach, let us represent the information diagrammatically.
Draw a perpendicular line from Vertex B to Midpoint D

Number 21

base = b = 6mm
perpendicular height = h

$ 5^2 = h^2 + 3^2 ...\text{Pythagorean Theorem} \\[4ex] 25 = h^2 + 9 \\[4ex] h^2 + 9 = 25 \\[4ex] h^2 = 25 - 9 \\[4ex] h^2 = 16 \\[4ex] h = \sqrt{16} \\[4ex] h = 4\;mm \\[5ex] Area, A = \dfrac{1}{2} \cdot b \cdot h \\[5ex] = \dfrac{1}{2} \cdot 6 \cdot 4 \\[5ex] = 12\;mm^2 $
(22.) A square vegetable garden is built in a rectangular 50-meter-by-40-meter lawn.
The lengths of the sides of the garden are 5 meters.
What area of the lawn, in square meters, is outside of the vegetable garden?

$ F.\;\; 1,575 \\[3ex] G.\;\; 1,750 \\[3ex] H.\;\; 1,800 \\[3ex] J.\;\; 1,975 \\[3ex] K.\;\; 2,475 \\[3ex] $

$ \underline{\text{Outer: Rectangular Lawn}} \\[3ex] Area = Length \cdot Width \\[3ex] = 50(40) \\[3ex] = 2000\;m^2 \\[5ex] \underline{\text{Inner: Square Garden}} \\[3ex] Area = Length^2 \\[4ex] = 5^2 \\[4ex] = 25\;m^2 \\[5ex] \underline{\text{Middle: Shaded Area: Outside Square Garden}} \\[3ex] Area = \text{Area of Rectangular Lawn} - \text{Area of Square Garden} \\[3ex] = 2000 - 25 \\[3ex] = 1975\;m^2 $
(23.) The vertices of $\triangle PQR$ are given in the standard (x, y) coordinate plane below.
What is the area, in square coordinate units, of $\triangle PQR$?

Number 23

$ A.\;\; 18 \\[3ex] B.\;\; 21 \\[3ex] C.\;\; 36 \\[3ex] D.\;\; 40 \\[3ex] E.\;\; 42 \\[3ex] $

$ P:\;Vertex\;1:\;\;(x_1, y_1) = (8, 10) \\[4ex] Q:\;Vertex\;2:\;\;(x_2, y_2) = (8, 4) \\[4ex] R:\;Vertex\;3:\;\;(x_3, y_3) = (1, 2) \\[4ex] x_1 = 8 ~~~~~~~~~~~~~~~~ y_1 = 10 \\[4ex] x_2 = 8 ~~~~~~~~~~~~~~~ y_2 = 4 \\[4ex] x_3 = 1 ~~~~~~~~~~~~~~~~~ y_3 = 2 \\[4ex] Area = \dfrac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| \\[4ex] = \dfrac{1}{2}|8(4 - 2) + 8(2 - 10) + 1(10 - 4)| \\[5ex] = \dfrac{1}{2}|8(2) + 8(-8) + 1(6)| \\[5ex] = \dfrac{1}{2}|16 - 64 + 6| \\[5ex] = \dfrac{1}{2}|-42| \\[5ex] = \dfrac{1}{2} \cdot 42 \\[5ex] = 21\;square\;\;units $
(24.) Rectangle P has an area of 24 square inches.
Rectangle Q has a perimeter of 24 inches.
The ratio of the area of Rectangle P to the area of Rectangle Q is 2:3.
Which of the quantities below can be determined from just the given information?

I. The perimeter of Rectangle P
II. The area of Rectangle Q
III. The ratio of the perimeter of Rectangle P to the perimeter of Rectangle Q

F. I only
G. II only
H. III only
J. I and II only
K. I, II, and III


Which of the quantities below can be determined from just the given information?
This is a tricky question.
The question is asking us to use only the information given.

Given:
Area of Rectangle P
Perimeter of Rectangle Q
Ratio of the area of Rectangle P to the area of Rectangle Q is 2:3.

$ \dfrac{\text{Area of Rectangle P}}{\text{Area of Rectangle Q}} = \dfrac{2}{3} \\[5ex] 2 \cdot \text{Area of Rectangle Q} = 3 \cdot \text{Area of Rectangle P} \\[3ex] 2 \cdot \text{Area of Rectangle Q} = 3 \cdot 24 \\[3ex] $ So, we can determine the Area of Rectangle Q directly from the given information.
We are not given the ratio of the perimeters so we cannot determine the perimeter of Rectangle P directly without doing some algebraic substitutions.
The same applies to the ratio of the perimeters.
Hence, the correct answer is Option G.
(25.) In kite ABCD, shown below, the diagonals intersect at E at a right angle.
The given lengths are in centimeters.
Which of the following values is closest to the perimeter, in centimeters, of ABCD?

Number 25

$ F.\;\; 32 \\[3ex] G.\;\; 40 \\[3ex] H.\;\; 65 \\[3ex] J.\;\; 91 \\[3ex] K.\;\; 182 \\[3ex] $

Considering the fact that you have to solve this question in 1 minute, it is recommended that you figure out the correct answer.
This is because the figure is drawn to scale
1st Approach:
In Figure ABE, the hypotenuse, |AB| is greater than 24
Assume that |AB| is about 25 cm
This also means that |AD| is about 25 cm

In Figure CBE, the hypotenuse, |CB| is greater than 7
Assume that |CB| is about 8 cm
This also means that |CD| is about 8 cm

So, the perimeter is about: 25(2) + 8(2) = 50 + 16 = 66 cm.
The closest answer in the option is 65 cm.
So, the correct answer is Option H.

$ \underline{\text{2nd Approach}} \\[3ex] \underline{\text{Right Triangles and the Pythagorean Theorem}} \\[3ex] \underline{\triangle ABE} \\[3ex] hyp^2 = 24^2 + 7^2 \\[4ex] hyp^2 = 576 + 49 \\[4ex] hyp = \sqrt{625} \\[3ex] |AB| = hyp = 25\;cm \\[5ex] \underline{\triangle ADE} \\[3ex] |AD| = hyp = 25\;cm ...\text{congruent triangle to triangle ABE} \\[5ex] \underline{\triangle BCE} \\[3ex] hyp^2 = 7^2 + 2^2 \\[4ex] hyp^2 = 49 + 4 \\[3ex] hyp = \sqrt{53} \\[3ex] |BC| = hyp = 7.280109889\;cm \\[5ex] \underline{\triangle DCE} \\[3ex] |DC| = hyp = 7.280109889\;cm ...\text{congruent triangle to triangle BCE} \\[5ex] Perimeter = |AB| + |AD| + |BC| + |DC| \\[3ex] = 25 + 25 + 7.280109889 + 7.280109889 \\[3ex] = 64.56021978 \\[3ex] \approx 65\;cm $
(26.) What is the volume, in cubic inches, of a cylinder that has a diameter of 16 inches and a height of 25 inches?
(Note: The volume, V, of a cylinder with radius r and height h is given by $V = \pi r^2h$.)

$ A.\;\; 200\pi \\[3ex] B.\;\; 400\pi \\[3ex] C.\;\; 1.600\pi \\[3ex] D.\;\; 5,000\pi \\[3ex] E.\;\; 6,400\pi \\[3ex] $

$ Let\;\;diameter = d \\[3ex] r = \dfrac{d}{2} = \dfrac{16}{2} = 8\;inches \\[5ex] h = 25\;inches \\[3ex] V = \pi r^2 h \\[3ex] = \pi \cdot 8^2 \cdot 25 \\[3ex] = 1,600\pi $
(27.) The dimensions, in feet, of a standard tennis court are shown in the figure below.
All lines that meet in the figure do so at right angles.
Which of the following values is closest to the area, in square feet, of the 1 service box shown shaded?

Number 27

$ F.\;\; 284 \\[3ex] G.\;\; 527 \\[3ex] H.\;\; 567 \\[3ex] J.\;\; 1,053 \\[3ex] K.\;\; 1,134 \\[3ex] $

Dimensions of shaded box = 21 feet by 13.5 feet
Length = 21 feet
Width = 13.5 feet

$ Area = Length \cdot Width \\[3ex] = 21 \cdot 13.5 \\[3ex] = 283.5 \\[3ex] \approx 284\;square\;feet $
(28.) The rectangular top surface of a patio is 4 feet longer than it is wide and has an area of 192 square feet.
What is the width, in feet, of the rectangular top surface of the patio?

$ F.\;\; 12 \\[3ex] G.\;\; 16 \\[3ex] H.\;\; 24 \\[3ex] J.\;\; 46 \\[3ex] K.\;\; 48 \\[3ex] $

$ Area (A) = Length (L) \cdot Width (W) \\[3ex] A = 192\;square\;feet \\[3ex] \text{4 feet longer than it is wide means that}: \\[3ex] L = W + 4 \\[3ex] \implies \\[3ex] A = (W + 4) \cdot W \\[3ex] W(W + 4) = 192 \\[3ex] W^2 + 4W = 192 \\[3ex] W^2 + 4W - 192 = 0 \\[3ex] (W + 16)(W - 12) = 0 \\[3ex] W + 16 = 0 \hspace{3em}OR\hspace{3em} W - 12 = 0 \\[3ex] W = -16 \hspace{3em}OR\hspace{3em} W = 12 \\[3ex] \text{The width cannot have a negative value} \\[3ex] \therefore W = 12\;feet $
(29.) The vertices of $\triangle PQR$ are given in the standard (x, y) coordinate plane below.
What is the area, in square coordinate units, of ▵PQR?

Number 29

$ A.\;\; 6 \\[3ex] B.\;\; 10 \\[3ex] C.\;\; 12 \\[3ex] D.\;\; 15 \\[3ex] E.\;\; 30 \\[3ex] $

$ P:\;Vertex\;1:\;\;(x_1, y_1) = (7, 6) \\[4ex] Q:\;Vertex\;2:\;\;(x_2, y_2) = (7, 3) \\[4ex] R:\;Vertex\;3:\;\;(x_3, y_3) = (-3, 4) \\[4ex] x_1 = 7 \hspace{5em} y_1 = 6 \\[4ex] x_2 = 7 \hspace{5em} y_2 = 3 \\[4ex] x_3 = -3 \hspace{5em} y_3 = 4 \\[4ex] Area = \dfrac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| \\[4ex] = \dfrac{1}{2}|7(3 - 4) + 7(4 - 6) + -3(6 - 3)| \\[5ex] = \dfrac{1}{2}|7(-1) + 7(-2) - 3(3)| \\[5ex] = \dfrac{1}{2}|-7 - 14 - 9| \\[5ex] = \dfrac{1}{2}|-30| \\[5ex] = \dfrac{1}{2} \cdot 30 \\[5ex] = 15\;square\;\;units $
(30.) In $\triangle ABC$ shown below, the lengths of the sides and an altitude are given in meters.
Which of the following expressions gives the area, in square meters, of $\triangle ABC$?

Number 30

$ A.\;\; hb \\[3ex] B.\;\; \dfrac{1}{2}ab \\[5ex] C.\;\; c\sin A \\[3ex] D.\;\; abc \sin A \\[3ex] E.\;\; \dfrac{1}{2}bc\sin A \\[5ex] $

$ \underline{\text{Area of a Triangle}} \\[3ex] Area = \dfrac{1}{2} \cdot base \cdot \perp height...\text{usually given to you} \\[5ex] \text{However, please see this pattern in another formula for Area} \\[3ex] Area = \dfrac{1}{2}ab \sin C \\[5ex] or \\[3ex] Area = \dfrac{1}{2}ac \sin B \\[5ex] or \\[3ex] Area = \dfrac{1}{2} bc \sin A \\[5ex] $ The correct answer is Option E.
Did you notice the pattern in the area: $\dfrac{1}{2} \cdot \;...$
sides: ab; Angle: C
sides: ac; Angle: B
sides: bc; Angle: A

Student: What if I do not remember the second formula?
ACT gives only the first formula.
$\dfrac{base \times height}{2}$ ...this is the formula that I am familiar with

Teacher: In that case, let us use the first formula and get the second formula.
Let us insert another label, D...vertex B meets $\overline{AC}$ at D


Number 30

$ \underline{\triangle ABD} \\[3ex] SOHCAHTOA \\[3ex] \sin A = \dfrac{opp}{hyp} = \dfrac{h}{c} \\[5ex] h = c\sin A \\[5ex] Area = \dfrac{1}{2}bh \\[5ex] = \dfrac{1}{2} \cdot b \cdot c\sin A \\[5ex] = \dfrac{1}{2}bc\sin A $
(31.) A particular brand of paper towel has 193 sheets per roll, and each sheet is 11 in by 5.5 in.
The paper towels come in boxes of 6 rolls with a shipping weight of 6.8 pounds.
The cost for a box of 6 rolls of this paper towel is $15.99 plus the shipping cost, given in the table below.

Number of boxes shipped Shipping cost per box
1 – 10
11 – 99
100 or more
$13.25
$12.00
$10.00

The diameter of each cylindrical roll is 6 inches.
Each roll has a cylindrical hole 1.5 inches in diameter, and each roll has a height of 11 inches, as shown in the diagrams below.

Number 31-1st

The 6 rolls are shipped in a box as shown below where the interior of the box is as small as possible.
What are the interior dimensions of this box, in inches?

Number 31-2nd

$ A.\;\; 8 \times 12 \times 11 \\[3ex] B.\;\; 9 \times 13.5 \times 11 \\[3ex] C.\;\; 11 \times 16.5 \times 11 \\[3ex] D.\;\; 12 \times 18 \times 11 \\[3ex] E.\;\; 36 \times 36 \times 66 \\[3ex] $

Length: 2 rolls * 6 inches diameter = 12 inches
Width: 3 rolls * 6 inches diameter = 18 inches
Height: 1 roll of 11 inches (all the rolls have equal height)
The interior dimensions of the box = Length × Width × Height
= 12 inches × 18 inches × 11 inches
(32.) Increasing both the length and width of a rectangle by 20% will increase the area of the rectangle by what percent?

$ A.\;\; 4\% \\[3ex] B.\;\; 20\% \\[3ex] C.\;\; 40\% \\[3ex] D.\;\; 44\% \\[3ex] E.\;\; 80\% \\[3ex] $

$ \underline{\text{Initial Rectangle}} \\[3ex] Length = L \\[3ex] Width = W \\[3ex] Area = A \\[3ex] A = L \cdot W = LW \\[5ex] \underline{\text{New Rectangle}} \\[3ex] \text{increase in length and width} \\[3ex] \text{20% of Length} = 0.2 \cdot L = 0.2L \\[3ex] \text{New Length} = L + 0.2L = 1.2L \\[3ex] \text{20% of Width} = 0.2 \cdot W = 0.2W \\[3ex] \text{New Width} = W + 0.2W = 1.2W \\[3ex] \text{New Area} = 1.2L \cdot 1.2W = 1.44LW \\[5ex] \underline{\text{Percent Change in the Area}} \\[3ex] \%Change = \dfrac{\text{New Area – Initial Area}}{Initial Area} \cdot 100 \\[5ex] = \dfrac{1.44LW - LW}{LW} \cdot 100 \\[5ex] = \dfrac{0.44LW}{LW} \cdot 100 \\[5ex] = 44\% $
(33.) The dimensions, in inches, of 2 rectangular prisms are shown in the figure below.
The volume of the large prism is the same as the volume of how many of the small prisms?

Number 33

$ A.\;\; 2 \\[3ex] B.\;\; 4 \\[3ex] C.\;\; 6 \\[3ex] D.\;\; 7 \\[3ex] E.\;\; 12 \\[3ex] $

$ \text{Volume of a rectangular prism} = Length \cdot Width \cdot Height \\[3ex] \underline{\text{Small Prism}} \\[3ex] Volume_{small} = x \cdot y \cdot z \\[3ex] Volume_{small} = xyz \\[5ex] \underline{\text{Large Prism}} \\[3ex] Volume_{large} = 2x \cdot 2y \cdot 3z \\[3ex] Volume_{large} = 2\cdot x \cdot 2\cdot y \cdot 3\cdot z \\[3ex] Volume_{large} = 12xyz \\[5ex] $ $Volume_{large}$ is equal to how many of $Volume_{small}?$

$ Volume_{large} = \text{how many} \;\; Volume_{small} \\[3ex] 12xyz = \text{how many} \cdot xyz \\[3ex] \text{how many} = \dfrac{12xyz}{xyz} \\[5ex] how many = 12 $
(34.) In the figure below, ABEH is a square.
Points C and D are on $\overline{BE}$ such that $\overline{BC}$, $\overline{CD}$, and $\overline{DE}$ all have the same length.
Points F and G are on $\overline{EH}$ such that $\overline{EF}$, $\overline{FG}$, and $\overline{GH}$ all have the same length.
How many of the triangles numbered 1 – 5 ($\triangle ABC$, $\triangle ACD$, $\triangle ADE$, $\triangle AEF$, and $\triangle AFG$ respectively) have the same area as $\triangle AGH$?

Number 34

$ A.\;\; 1 \\[3ex] B.\;\; 2 \\[3ex] C.\;\; 3 \\[3ex] D.\;\; 4 \\[3ex] E.\;\; 5 \\[3ex] $

Let us analyze this question.

$ \text{Area of a Triangle} = \dfrac{1}{2} \cdot base \cdot \perp height \\[3ex] $ $\triangle ACB$ has the same area as $\triangle AGH$
This is because they have:
(I.) the same base: $\overline{BC} = \overline{GH}$
(II.) the same perpendicular height: because a square has equal sides: $\overline{AB} = \overline{AH}$

The other triangles: $\triangle ACD$, $\triangle ADE$, $\triangle AEF$, and $\triangle AFG$ have:
(III.) the same base: $\overline{CD} = \overline{DE} = \overline{EF} = \overline{FG}$

But what about their perpendicular heights?
How do we calculate the area of a triangle if the triangle does not have a perpendicular height?
One of the ways to calculate the area is to extend the base to the same level as the opposite vertex, then draw a perpendicular height from that vertex to the extension of the base.
This is what I mean.
$\triangle ACD$ does not a perpendicular height

Number 34-1st

One of the ways to calculate the area of the triangle is to draw the perpendicular height $\overline{AB}$ (Please see the red lines)

Number 34-2nd

This implies that the perpendicular height is still the same side of the square
(IV.) the same perpendicular height: the side of the square

Therefore all five triangles: $\triangle ACB$, $\triangle ACD$, $\triangle ADE$, $\triangle AEF$, and $\triangle AFG$ have the same area as $\triangle AGH$.
(35.) A scale drawing of a proposed trapezoidal landscape design is shown in the figure below, with the given dimensions in meters.
The trapezoid consists of a right triangle and a square divided into 3 isosceles right triangles.
The unshaded regions will be white rock; the shaded triangular regions will be black rock.
What is the area, in square meters, that will be black rock?

Number 35

$ F.\;\; 20 \\[3ex] G.\;\; 25 \\[3ex] H.\;\; 45 \\[3ex] J.\;\; 60 \\[3ex] K.\;\; 70 \\[3ex] $

The diagram is drawn to scale.
Doing it the ACT way (because of the time limit of 1 minute):

$ \underline{\text{shaded right triangle}} \\[3ex] base = 14 - 10 = 4\;m \\[3ex] \perp height = 10\;m \\[3ex] Area = \dfrac{1}{2} \cdot base \cdot \perp height \\[5ex] = \dfrac{1}{2} \cdot 4 \cdot 10 = 20\;m^2 \\[5ex] \underline{\text{shaded isosceles triangle}} \\[3ex] Area = \dfrac{1}{4} \cdot \text{Area of the square}...diagram \\[3ex] = \dfrac{1}{4} \cdot (10 \cdot 10) \\[5ex] = 25\;m^2 \\[5ex] \underline{\text{black rock}} \\[3ex] Area = 20 + 25 \\[3ex] = 45\;m^2 \\[3ex] $
(36.) A solid rectangular block of steel weighs w pounds.
Which of the following expressions gives the weight, in pounds, of a larger solid rectangular block that is made of the same kind of steel and has length, width, and height 4 times those of the smaller block?
(Note: Assume that weight is proportional to volume.)

$ F.\;\; 4w^3 \\[3ex] G.\;\; 4w \\[3ex] H.\;\; 16w \\[3ex] J.\;\; 64w \\[3ex] K.\;\; 64w^3 \\[3ex] $

$ Volume = Length \cdot Width \cdot Height \\[3ex] \underline{\text{Solid Rectangular Block: 1}} \\[3ex] Length = L \\[3ex] Width = W \\[3ex] Height = H \\[3ex] Volume = V_1 \\[3ex] Weight = w ...Given \\[3ex] V_1 = L \cdot W \cdot H \\[3ex] V_1 = LWH \\[5ex] \underline{\text{Larger Solid Rectangular Block: 2}} \\[3ex] Length = 4L \\[3ex] Width = 4W \\[3ex] Height = 4H \\[3ex] Volume = V_2 \\[3ex] Weight = ? \\[5ex] V_2 = 4L \cdot 4W \cdot 4H \\[3ex] V_2 = 64LWH \\[5ex] Volume \alpha Weight...\text{Direct Proportion...assumed} \\[3ex] Volume = k \cdot Weight ...\text{k = constant of proportionality} \\[3ex] k = \dfrac{Volume}{Weight} \\[5ex] \implies \\[3ex] k = \dfrac{V_1}{w} = \dfrac{V_2}{Weight} \\[5ex] \dfrac{LWH}{w} = \dfrac{64LWH}{Weight} \\[5ex] \text{Cross Multiply} \\[3ex] LWH \cdot Weight = w \cdot 64LWH \\[3ex] Weight = \dfrac{w \cdot 64LWH}{LWH} \\[5ex] Weight = 64w\;pounds $
(37.) Julia, an archaeology student, needs to dig 6 cylindrical pits at an archaeological site.
Each pit will be 8 feet in diameter and 6 feet deep.
Since she needs to work slowly and carefully, Julia can remove dirt at an average rate of 3 cubic feet per hour.
Which of the following values is closest to the number of hours it will take Julia to dig all 6 pits?

(Note: The volume, V, of a cylinder with radius r and height h is $V = \pi r^2 h$; π ≈ 3.14)

$ F.\;\; 100 \\[3ex] G.\;\; 200 \\[3ex] H.\;\; 400 \\[3ex] J.\;\; 600 \\[3ex] K.\;\; 800 \\[3ex] $

First, we can find the volume to dig a pit, then use the Unity Fraction method to set up the calculation

$ \underline{\text{1 Cylindrical Pit}} \\[3ex] diameter, d = 8\;ft \\[3ex] radius, r = \dfrac{d}{2} = \dfrac{8}{2} = 4\;ft \\[5ex] height, h = 6\;ft \\[3ex] \pi \approx 3.14 \\[3ex] Volume, V = \pi r^2 h \\[3ex] V = 3.14 \cdot 4^2 \cdot 6 \\[3ex] V = 301.44\;ft^3 \\[5ex] \underline{\text{Unity Fraction Method}} \\[3ex] \text{Average rate of 3 cubic feet per hour to remove dirt} \\[3ex] \text{number of hours it will take Julia to dig 6 cylindrical pits = ?} \\[3ex] 6\;pit \cdot \dfrac{...ft^3}{...pit} \cdot \dfrac{...hr}{...ft^3} \\[5ex] 6\;pit \cdot \dfrac{301.44\;ft^3}{1\;pit} \cdot \dfrac{1\;hr}{3\;ft^3} \\[5ex] 602.88\;hours \\[3ex] \approx 600\;hours ...\text{closest answer} \\[3ex] $ Student: Mr. C, what if I want to do it one at a time?
Like...calculate the volume to dig 1 pit first
Then, multiply by 6 to get the volume to dig all 6 pits
Then, use Proportional Reasoning to find the time
1 hour to dig 3 cubic feet
Therefore, how many hours is needed to dig 301.44 cubic feet?
Teacher: Sure, you can do it that way.
The main thing is to get it correctly on time.
(38.) The midpoints of the sides of square ABCD are the vertices pf square KLMN, shown below.
The side length of square ABCD is 14 meters.
What is the area, in square meters, of the shaded portion?

Number 38

$ F.\;\; 7\sqrt{2} \\[3ex] G.\;\; 14\sqrt{2} \\[3ex] H.\;\; 24.5 \\[3ex] J.\;\; 49 \\[3ex] K.\;\; 98 \\[3ex] $

Area of the shaded portion = Area of Square ABCD − Area of Square KLMN
Area of a Square = Side Length²

$ \underline{\text{Square ABCD}} \\[3ex] \text{side length} = 14\;m \\[3ex] \overline{AB} = \overline{BC} = \overline{CD} = \overline{DA} = 14\;m \\[3ex] Area = 14^2 \\[3ex] Area = 196\;m^2 \\[5ex] \underline{\text{Triangle ALK}} \\[3ex] \text{This is a right triangle because a square has 4 right angles} \\[3ex] \overline{AL} = \dfrac{\overline{AB}}{2} ...\text{Midpoint} \\[5ex] = \dfrac{14}{2} \\[5ex] = 7\;m \\[5ex] \overline{AK} = \dfrac{\overline{DA}}{2} ...\text{Midpoint} \\[5ex] = \dfrac{14}{2} \\[5ex] = 7\;m \\[5ex] \overline{KL}^2 = \overline{AL}^2 + \overline{AK}^2 ...\text{Pythagorean Theorem} \\[3ex] \overline{KL}^2 = 7^2 + 7^2 \\[3ex] \overline{KL}^2 = 49 + 49 \\[3ex] \overline{KL}^2 = 98 \\[3ex] \overline{KL} = \sqrt{98} \\[5ex] \underline{\text{Square KLMN}} \\[3ex] \text{side length} = \overline{KL} = \sqrt{98}\;m \\[3ex] Area = \sqrt{98}^2 \\[3ex] Area = 98\;m^2 \\[5ex] \underline{\text{Shaded Portion}} \\[3ex] Area = 196 - 98 \\[3ex] Area = 98\;m^2 $


Use the following information to answer questions 39 — 40.
Shown below is quadrilateral ABCD in the standard (x, y) coordinate plane.

Numbers 39-40


(39.) What is the area, in square coordinate units, of ABCD?

$ F.\;\; 16 \\[3ex] G.\;\; 24 \\[3ex] H.\;\; 32 \\[3ex] J.\;\; 48 \\[3ex] K.\;\; 64 \\[3ex] $

Quadrilateral ABCD consists of two triangles: Triangle DAB and Triangle DCB
Let us find the area of those two triangles

$ \underline{\text{Triangle DAB}} \\[3ex] D:\;Vertex\;1:\;\;(x_1, y_1) = (-2, 0) \\[4ex] A:\;Vertex\;2:\;\;(x_2, y_2) = (0, 4) \\[4ex] B:\;Vertex\;3:\;\;(x_3, y_3) = (6, 0) \\[4ex] x_1 = -2 \hspace{5em} y_1 = 0 \\[4ex] x_2 = 0 \hspace{5em} y_2 = 4 \\[4ex] x_3 = 6 \hspace{5em} y_3 = 0 \\[4ex] Area = \dfrac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| \\[4ex] = \dfrac{1}{2}|-2(4 - 0) + 0(0 - 0) + 6(0 - 4)| \\[5ex] = \dfrac{1}{2}|-2(4) + 0 + 6(-4)| \\[5ex] = \dfrac{1}{2}|-8 - 24| \\[5ex] = \dfrac{1}{2}|-32| \\[5ex] = \dfrac{1}{2} \cdot 32 \\[5ex] = 16\;square\;units \\[5ex] \underline{\text{Triangle DCB}} \\[3ex] D:\;Vertex\;1:\;\;(x_1, y_1) = (-2, 0) \\[4ex] C:\;Vertex\;2:\;\;(x_2, y_2) = (0, -4) \\[4ex] B:\;Vertex\;3:\;\;(x_3, y_3) = (6, 0) \\[4ex] x_1 = -2 \hspace{5em} y_1 = 0 \\[4ex] x_2 = 0 \hspace{5em} y_2 = -4 \\[4ex] x_3 = 6 \hspace{5em} y_3 = 0 \\[4ex] Area = \dfrac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| \\[4ex] = \dfrac{1}{2}|-2(-4 - 0) + 0(0 - 0) + 6(0 - -4)| \\[5ex] = \dfrac{1}{2}|-2(-4) + 0 + 6(0 + 4)| \\[5ex] = \dfrac{1}{2}|8 + 6(4)| \\[5ex] = \dfrac{1}{2}|8 + 24| \\[5ex] = \dfrac{1}{2}|32| \\[5ex] = \dfrac{1}{2} \cdot 32 \\[5ex] = 16\;square\;units \\[5ex] \underline{\text{Area of Quadrilateral ABCD}} \\[3ex] = \text{Area of Triangle DAB} + \text{Area of Triangle DCB} \\[3ex] = 16 + 16 \\[3ex] = 32\;square\;units \\[3ex] $ Student: Mr. C
Considering the fact that Triangle DAB is congruent to Triangle DCB,
did we need to calculate the area of Triangle DCB?
I mean... I thought we were supposed to solve this question in about a minute
Teacher: Yes, you are correct...
The two triangles are congruent
So, we could have just multiplied the area of Triangle DAB by 2
(40.) What is the perimeter, in coordinate units, of ABCD?

$ A.\;\; 4\sqrt{5} \\[3ex] B.\;\; 4\sqrt{5} + 4\sqrt{13} \\[3ex] C.\;\; 4\sqrt{13} \\[3ex] D.\;\; 16 \\[3ex] E.\;\; 144 \\[3ex] $

$ \underline{\text{Distance AB}} \\[3ex] A\;(x_1, y_1) = (0, 4) \\[4ex] B\;(x_2, y_2) = (6, 0) \\[4ex] |AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\[4ex] = \sqrt{(6 - 0)^2 + (0 - 4)^2} \\[4ex] = \sqrt{6^2 + (-4)^2} \\[4ex] = \sqrt{36 + 16} \\[3ex] = \sqrt{52} \\[3ex] = \sqrt{4 \cdot 13} \\[3ex] = \sqrt{4} \cdot \sqrt{13} \\[3ex] = 2\sqrt{13} \\[5ex] \underline{\text{Distance BC}} \\[3ex] |BC| = 2\sqrt{13} ...|BC| \cong |AB| \\[5ex] \underline{\text{Distance AD}} \\[3ex] A\;(x_1, y_1) = (0, 4) \\[4ex] D\;(x_2, y_2) = (-2, 0) \\[4ex] |AD| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\[4ex] = \sqrt{(-2 - 0)^2 + (0 - 4)^2} \\[4ex] = \sqrt{(-2)^2 + (-4)^2} \\[4ex] = \sqrt{4 + 16} \\[3ex] = \sqrt{20} \\[3ex] = \sqrt{4 \cdot 5} \\[3ex] = \sqrt{4} \cdot \sqrt{5} \\[3ex] = 2\sqrt{5} \\[5ex] \underline{\text{Distance DC}} \\[3ex] |DC| = 2\sqrt{5} ...|DC| \cong |AD| \\[5ex] \underline{\text{Quadrilateral ABCD}} \\[3ex] Perimeter = |AB| + |BC| + |AD| + |CD| \\[3ex] = 2\sqrt{13} + 2\sqrt{13} + 2\sqrt{5} + 2\sqrt{5} \\[3ex] = 4\sqrt{13} + 4\sqrt{5} $




Top




(41.) The volume of a solid object is equal to the volume of water it displaces when completely submerged in water.
A solid object will be placed in a rectangular tank that has a base of 40 in by 30 in and is filled with water to a uniform depth of 10 in.
When the object is completely submerged, the new depth of the water in the tank is $10\dfrac{1}{2}$ inch.
What is the volume, in cubic inches, of the object?

$ F.\;\; 120 \\[3ex] G.\;\; 600 \\[3ex] H.\;\; 1,095 \\[3ex] J.\;\; 1,260 \\[3ex] K.\;\; 2,400 \\[3ex] $

The volume of a solid object is equal to the volume of water it displaces when completely submerged in water...
Connecting Math and Physics
This is the Archimedes' Principle.
It states that the buoyant force acting on a submerged object is equal to the weight of the fluid it displaces.


$ \underline{\text{Rectangular Tank before Object was completely submerged}} \\[3ex] \text{base area} = 40 \cdot 30 = 1200\;in^2 \\[3ex] \text{depth} = 10\;in \\[5ex] \underline{\text{Rectangular Tank after Object was completely submerged}} \\[3ex] \text{base area} = 40 \cdot 30 = 1200\;in^2 \\[3ex] \text{new depth} = 10\dfrac{1}{2}\;in \\[5ex] \text{change in depth} = \text{rise in water} = \text{displaced water} \\[3ex] = 10\dfrac{1}{2} - 10 = \dfrac{1}{2}\;in \\[5ex] \text{This change is due to the submerging of the object} \\[5ex] \underline{\text{Volume of Object}} \\[3ex] \text{Volume} = \text{base area} \cdot \text{displaced water} \\[3ex] = 1200 \cdot \dfrac{1}{2} \\[5ex] = 600\;in^3 $
(42.) The area of the trapezoid shown below is 20 square feet, the height is 5 feet, and the length of one base is 2 feet.
What is b, the length of the other base, in feet?

Number 42

$ F.\;\; 6 \\[3ex] G.\;\; 8 \\[3ex] H.\;\; 13 \\[3ex] J.\;\; 15 \\[3ex] K.\;\; 23 \\[3ex] $

The area of a trapezoid is the product of: one-half and the sum of the parallel sides and the perpendicular height

$ Area = 20\;ft^2 \\[3ex] Area = \dfrac{1}{2} \cdot (2 + b) \cdot 5 \\[5ex] \dfrac{5}{2} \cdot (2 + b) = 20 \\[5ex] 2 + b = 20 \cdot \dfrac{2}{5} \\[5ex] 2 + b = 8 \\[3ex] b = 8 - 2 \\[3ex] b = 6\;feet $
(43.)

(44.) A square and a rectangle have the same area.
The length of the rectangle is 196 centimeters, and the width of the rectangle is 4 centimeters.
What is the length, in centimeters, of a side of the square?

$ A.\;\; 20 \\[3ex] B.\;\; 28 \\[3ex] C.\;\; 100 \\[3ex] D.\;\; 400 \\[3ex] E.\;\; 784 \\[3ex] $

$ \underline{\text{Rectangle}} \\[3ex] Length = 196\;cm \\[3ex] Width = 4\;cm \\[3ex] Area = Length \cdot Width \\[3ex] = 196 \cdot 4 \\[3ex] = 784 \;cm^2 \\[5ex] \underline{\text{Square}} \\[3ex] Length = L \\[3ex] Area = 784 \;cm^2 \\[3ex] Area = L^2 \\[3ex] L^2 = 784 \\[3ex] L = \sqrt{784} \\[3ex] L = 28\;cm $


Use the following information to answer questions 45 — 47.

Jerry is building a rectangular patio against one side of his house.
The top surface of the patio, along with its width and diagonal, is shown in the figure below.
To build the patio, he will first dig a rectangular hole to a uniform depth of 8 inches.
He will then fill the hole with gravel to a uniform depth of 3 inches.
He will purchase gravel from his local rock quarry for $54 per cubic yard (1 cubic yard = 27 cubic feet).
Next, he will pour concrete on top of the gravel to obtain a smooth surface for the patio.
Finally, he will frame and build a rectangular concrete step with the dimensions shown below.

Numbers 45-47


(45.) Jerry will purchase 42 cubic feet of gravel for his patio.
The local rock quarry will sell gravel in the exact volume needed by the customer.
What is the cost, in dollars, to purchase the gravel from the local rock quarry?

$ A.\;\; \$ 54 \\[3ex] B.\;\; \$ 84 \\[3ex] C.\;\; \$162 \\[3ex] D.\;\; \$270 \\[3ex] E.\;\; \$432 \\[3ex] $

1 cubic yard = 27 cubic feet
$54 per cubic yard ⇒ 1 cubic yard = $54

$ \underline{\text{Unity Fraction Method}} \\[3ex] \text{42 cubic feet} \cdot \dfrac{\text{...cubic yard}}{\text{...cubic feet}} \cdot \dfrac{\text{...dollar}}{\text{...cubic yard}} \\[5ex] = \text{42 cubic feet} \cdot \dfrac{\text{1 cubic yard}}{\text{27 cubic feet}} \cdot \dfrac{\text{54 dollars}}{\text{1 cubic yard}} \\[5ex] = \$84 $
(46.) What is the area, in square feet, of the top surface of Jerry’s patio?

$ F.\;\; 18 \\[3ex] G.\;\; 24 \\[3ex] H.\;\; 168 \\[3ex] J.\;\; 175 \\[3ex] K.\;\; 576 \\[3ex] $

$ \underline{\text{Rectangular Patio}} \\[3ex] Diagonal, D = hypotenuse = 25\;ft \\[3ex] Width, W = leg = 7\;ft \\[3ex] Length, L = leg = ? \\[5ex] hyp^2 = leg^2 + leg^2 ...\text{Pythagorean Theorem} \\[3ex] L^2 + W^2 = D^2 \\[3ex] L^2 + 7^2 = 25^2 \\[3ex] L^2 = 25^2 - 7^2 \\[3ex] L^2 = 625 - 49 \\[3ex] L^2 = 576 \\[3ex] L = \sqrt{576} \\[3ex] L = 24\;ft \\[5ex] \underline{\text{Top Surface: Rectangular Patio}} \\[3ex] Area = Length \cdot Width \\[3ex] Area = 24 \cdot 7 \\[3ex] Area = 168\;ft^2 $
(47.) Jerry will use bags of concrete mix to make the step.
Each bag makes 0.4 cubic feet of concrete.
To the nearest 0.1 bag, how many bags of concrete mix will he need for the step?

$ A.\;\; 1.8 \\[3ex] B.\;\; 4.5 \\[3ex] C.\;\; 5.5 \\[3ex] D.\;\; 11.3 \\[3ex] E.\;\; 18.0 \\[3ex] $

$ \underline{\text{Rectangular Concrete Step}} \\[3ex] Length = 3\;ft \\[3ex] Width = 1.5\;ft \\[3ex] Height = 1\;ft \\[5ex] Volume = Length \cdot Width \cdot Height \\[3ex] Volume = 3 \cdot 1.5 \cdot 1 \\[3ex] Volume = 4.5\;\text{cubic feet} \\[5ex] 0.4\;\text{cubic feet}= \text{1 bag of concrete} \\[3ex] \therefore 4.5\;\text{cubic feet} = ? \[5ex] \underline{\text{Unity Fraction Method}} \\[3ex] 4.5\;\text{cubic feet} \cdot \dfrac{\text{1 bag}}{0.4\;\text{cubic feet}} \\[5ex] = 11.25\;bags \\[3ex] \approx 11.3\;bags ...\text{to the nearest 0.1 bag} $
(48.) A wheel with a radius of 1 centimeter rolls without slipping along the ground.
After exactly 2 revolutions, how many centimeters has the wheel traveled along the ground?

$ A.\;\; 2 \\[3ex] B.\;\; \pi \\[3ex] C.\;\; 2\pi \\[3ex] D.\;\; 4 \\[3ex] E.\;\; 4\pi \\[3ex] $

A wheel with a radius of 1 centimeter rolls ...
How many centimeters has the wheel traveled along the ground?

Assume a circular wheel...of course it should be circular
This implies that 1 revolution of rolling the wheel is the circumference of the circle. So, 2 revolutions is twice the circumference of the circle

$ radius = 1\;cm \\[3ex] Circumference = 2 \cdot \pi \cdot radius \\[3ex] \text{2 revolutions = twice the circumference} \\[3ex] = 2 \cdot 2 \cdot \pi \cdot 1 \\[3ex] = 4\pi $
(49.)

(50.)


(51.)

(52.)


(53.)

(55.)


(55.)

(56.)


(57.)

(58.)


(59.)

(60.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.