Please Read Me.

Vectors and Scalars

Welcome to Our Site


I greet you this day,

For the Classic ACT exam:
The ACT Mathematics test is a timed exam...60 questions in 60 minutes
This implies that you have to solve each question in one minute.
Each of the first 20 questions (less challenging) will typically take less than a minute a solve.
Each of the next 20 questions (medium challenging) may take about a minute to solve.
Each of the last 20 questions (more challenging) may take more than a minute to solve.
The goal is to maximize your time.
You use the time saved on the questions you solve in less than a minute to solve questions that will take more than a minute.
So, you should try to solve each question correctly and timely.
So, it is not just solving a question correctly, but solving it correctly on time.
Please ensure you attempt all ACT questions.
There is no negative penalty for a wrong answer.
Also: please note that unless specified otherwise, geometric figures are drawn to scale. So, you can figure out the correct answer by eliminating the incorrect options.
Other suggestions are listed in the solutions/explanations as applicable.

These are the solutions to the ACT past questions on the topics: Vectors and Scalars.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and helpful in your passing the Mathematics test of the ACT, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Symbols and Formulas

(1.) A(x, y)
Point: A
(): parenthesis
x = x-coordinate
y = y-coordinate

(2.) A$\langle x, y \rangle$
Vector: A
$\langle \rangle$: angle brackets
x = horizontal component
y = vertical component

(3.) Given a vector: $\overrightarrow{AB}$

$ \overrightarrow{AB} = \vec{B} - \vec{A} \\[3ex] first\;\;vector = \vec{A} = \langle A_x, A_y \rangle \\[3ex] second\;\;vector = \vec{B} = \langle B_x, B_y \rangle \\[3ex] \overrightarrow{AB} = \langle B_x - A_x, B_y - A_y \rangle \\[3ex] \overrightarrow{AB} = -\overrightarrow{BA} \\[5ex] $ (4.) Given a vector: $\overrightarrow{BA}$

$ \overrightarrow{BA} = \vec{A} - \vec{B} \\[3ex] first\;\;vector = \vec{B} = \langle B_x, B_y \rangle \\[3ex] second\;\;vector = \vec{A} = \langle A_x, A_y \rangle \\[3ex] \overrightarrow{BA} = \langle A_x - B_x, A_y - B_y \rangle \\[3ex] \overrightarrow{BA} = -\overrightarrow{AB} \\[5ex] $ (5.) Given several vectors:
Notice the colors and the pattern

$ (a.)\;\; \overrightarrow{AB} = -\overrightarrow{BA} \\[3ex] (b.)\;\; \overrightarrow{CD} = -\overrightarrow{DC} \\[3ex] (c.)\;\; \overrightarrow{A\color{red}{K}} + \overrightarrow{\color{red}{K}C} = \overrightarrow{AC} \\[3ex] (d.)\;\; \overrightarrow{U\color{red}{K}} + \overrightarrow{\color{red}{K}S} = \overrightarrow{US} \\[3ex] (e.)\;\; \overrightarrow{M\color{red}{P}} + \overrightarrow{\color{red}{P}C} + \overrightarrow{\color{red}{C}D} = \overrightarrow{MD} \\[5ex] $ (6.) Given two position vectors: $\overrightarrow{OE}$ and $\overrightarrow{OF}$

$ \overrightarrow{EF} = \overrightarrow{EO} + \overrightarrow{OF} \\[3ex] \overrightarrow{EF} = -\overrightarrow{OE} + \overrightarrow{OF} \\[5ex] $ (7.) Given vectors in component form OR unit vectors:
Say for a two-dimensional vector A:

$ \boldsymbol{A}\langle x, y \rangle = x\boldsymbol{i} + y\boldsymbol{j} \\[3ex] $ Say for a three-dimensional vector C:

$ \boldsymbol{C}\langle x, y, z \rangle = x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k} \\[3ex] $ Sum and Difference of Vectors
Assume we have two two-dimensional vectors: C and D:

$ \boldsymbol{C}\langle c_1, c_2 \rangle = c_1\boldsymbol{i} + c_2\boldsymbol{j} \\[3ex] \boldsymbol{D}\langle d_1, d_2 \rangle = d_1\boldsymbol{i} + d_2\boldsymbol{j} \\[5ex] \underline{Sum} \\[3ex] \vec{C} + \vec{D} \\[3ex] = \langle c_1 + d_1, c_2 + d_2 \rangle \\[3ex] = (c_1 + d_1)\boldsymbol{i} + (c_2 + d_2)\boldsymbol{j} \\[5ex] \underline{Difference} \\[3ex] \vec{C} - \vec{D} \\[3ex] = \langle c_1 - d_1, c_2 - d_2 \rangle \\[3ex] = (c_1 - d_1)\boldsymbol{i} + (c_2 - d_2)\boldsymbol{j} \\[5ex] $ Assume we have two three-dimensional vectors: C and D:

$ \boldsymbol{C}\langle c_1, c_2, c_3 \rangle = c_1\boldsymbol{i} + c_2\boldsymbol{j} + c_3\boldsymbol{k} \\[3ex] \boldsymbol{D}\langle d_1, d_2, d_3 \rangle = d_1\boldsymbol{i} + d_2\boldsymbol{j} + d_3\boldsymbol{j} \\[5ex] \underline{Sum} \\[3ex] \vec{C} + \vec{D} \\[3ex] = \langle c_1 + d_1, c_2 + d_2, c_3 + d_3 \rangle \\[3ex] = (c_1 + d_1)\boldsymbol{i} + (c_2 + d_2)\boldsymbol{j} + (c_3 + d_3)\boldsymbol{k} \\[5ex] \underline{Difference} \\[3ex] \vec{C} - \vec{D} \\[3ex] = \langle c_1 - d_1, c_2 - d_2, c_3 - d_3 \rangle \\[3ex] = (c_1 - d_1)\boldsymbol{i} + (c_2 - d_2)\boldsymbol{j} + (c_3 - d_3)\boldsymbol{k} \\[5ex] $ (8.) A displacement vector say $\overrightarrow{OA}$ beginning from the origin, O and ending at the point A is the position vector, $\overrightarrow{A}$

(9.) Section Formula
Given two points say A and B with position vectors: $\overrightarrow{A}$ and $\overrightarrow{B}$ respectively, if a point say C divides the line segment |AC| in the ratio: m:n, then the position vector of C is given by: $ \overrightarrow{C} = \dfrac{m\overrightarrow{B} + n\overrightarrow{A}}{m + n} \\[5ex] $ (10.) Collinearity of Points using Vectors
Given two vectors say: $\overrightarrow{A}$ and $\overrightarrow{B}$ and a scalar say k:

$ Say: \overrightarrow{A} = \langle a_1, a_2 \rangle \\[5ex] \overrightarrow{B} = \langle b_1, b_2 \rangle \\[5ex] $ (a.) Scalar Multiple Method
The two vectors are collinear if one is a scalar multiple of the other.
(This concept also demonstrates the linear dependency of two vectors.)
OR
The two vectors are collinear if the ratio of their corresponding components are equal.

$ \overrightarrow{A} = k \cdot \overrightarrow{B} \\[5ex] OR \\[3ex] \dfrac{a_1}{b_1} = \dfrac{a_2}{b_2} \\[6ex] $ (b.) Method of Determinants
Two vectors are collinear if their determinant is zero.

$ \begin{vmatrix} a_1 & a_2 \\[4ex] b_1 & b_2 \end{vmatrix} = a_1b_2 - b_1a_2 = 0 \\[7ex] $ (c.) Dot Product Angle Between the Vectors
If the dot product angle between the two vectors is 0° or 180°, then the two vectors are collinear.

$ \overrightarrow{A} \cdot \overrightarrow{B} = |\overrightarrow{A}| |\overrightarrow{B}| \cos \theta \\[3ex] where \\[3ex] \theta = \text{dot product angle between the two vectors} $

Theorems

(1.) Proportional Segments Theorem for Diagonals in a Quadrilateral
In a quadrilateral, the line segment joining two points that divide opposite sides proportionally or at specific ratios from a common vertex is parallel to and proportional to the diagonal that does not connect to the vertex.

(2.)

(1.)

(2.)

(3.)

(4.)


(5.) Vector $\overrightarrow{AB}$ is shown in the standard (x, y) coordinate plane below.
Point C will be placed on $\overline{AB}$ so that $\overrightarrow{AC} = \dfrac{1}{4}\overrightarrow{AB}$.
What will be the coordinates of point C?

Number 5

$ A.\;\; \left(\dfrac{1}{2}, \dfrac{5}{2}\right) \\[5ex] B.\;\; \left(1, \dfrac{5}{2}\right) \\[5ex] C.\;\; \left(2, \dfrac{3}{2}\right) \\[5ex] D.\;\; (3, 4) \\[3ex] E.\;\; \left(5, \dfrac{11}{2}\right) \\[5ex] $

$ A(-1, 1) \hspace{5em} B(7, 7) \\[3ex] x_1 = -1 \hspace{5em} x_2 = 7 \\[4ex] y_1 = 1 \hspace{6em} y_2 = 7 \\[4ex] Vector\; \overrightarrow{AB} \\[3ex] \Delta x = x_2 - x_1 \\[4ex] = 7 - (-1) \\[3ex] = 7 + 1 \\[3ex] = 8 \\[5ex] \Delta y = y_2 - y_1 \\[4ex] = 7 - 1 \\[3ex] = 6 \\[3ex] \overrightarrow{AB} = (\overrightarrow{AB}_x, \overrightarrow{AB}_y) = (\Delta x, \Delta y) = (8, 6) \\[5ex] \overrightarrow{AC} = \dfrac{1}{4}\overrightarrow{AB} \\[5ex] = \left(\dfrac{1}{4} * 8, \dfrac{1}{4} * 6\right) \\[5ex] = \left(2, \dfrac{3}{2}\right) \\[5ex] = \left(\overrightarrow{AC}_x, \overrightarrow{AC}_y\right) \\[5ex] \text{Coordinates of Point C} = \left(x_1 + \overrightarrow{AC}_x, y_1 + \overrightarrow{AC}_y\right) \\[5ex] = \left(-1 + 2, 1 + \dfrac{3}{2}\right) \\[5ex] = \left(1, \dfrac{2}{2} + \dfrac{3}{2}\right) \\[5ex] = \left(1, \dfrac{2 + 3}{2}\right) \\[5ex] = \left(1, \dfrac{5}{2}\right) $
(6.)


(7.)

(8.)


(9.)

(10.)


(11.)

(12.)


(13.)

(14.)


(15.)

(16.)


(17.)

(18.)


(19.)

(20.)






Top




(21.)

(22.)


(23.)

(24.)


(25.)

(26.)


(27.)

(28.)


(29.)

(30.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.