Please Read Me.

Differential Calculus

Welcome to Our Site


I greet you this day,

These are the solutions to the CSEC Additional Mathematics past questions on Differential Calculus.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and helpful in your passing the Additional Mathematics test of the CSEC exam, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Rules of Derivatives

$ a, n \:\:are\:\:constants \\[3ex] (1.)\:\: \underline{Power\;\;Rule} \\[3ex] y = ax^n \\[3ex] \dfrac{dy}{dx} = nax^{n - 1} \\[7ex] (2.)\:\: \underline{Sum/Difference\;\;Rule} \\[3ex] y = u \pm v \pm w \\[3ex] u = f(x);\:\: v = f(x);\;\; w = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{du}{dx} \pm \dfrac{dv}{dx} \pm \dfrac{dw}{dx} \\[7ex] (3.)\:\: \underline{Chain\;\;Rule} \\[3ex] y = f(u) \\[3ex] u = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{du} * \dfrac{du}{dx} \\[7ex] Also: \\[3ex] y = f(u) \\[3ex] u = f(v) \\[3ex] v = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{du} * \dfrac{du}{dv} * \dfrac{dv}{dx} \\[7ex] Also: \\[3ex] y = f(u) \\[3ex] u = f(v) \\[3ex] v = f(w) \\[3ex] w = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{du} * \dfrac{du}{dv} * \dfrac{dv}{dw} * \dfrac{dw}{dx} \\[7ex] ...and\;\;so\;\;on\;\;and\;\;so\;\;forth \\[3ex] (4.)\:\: \underline{Product\;\;Rule} \\[3ex] y = u * v \\[3ex] u = f(x);\:\: v = f(x) \\[3ex] \dfrac{dy}{dx} = u\dfrac{dv}{dx} + v\dfrac{du}{dx} \\[7ex] (5.)\:\: \underline{Quotient\;\;Rule} \\[3ex] y = \dfrac{u}{v} \\[5ex] u = f(x);\:\: v = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{v\dfrac{du}{dx} - u\dfrac{dv}{dx}}{v^2} $



Standard Derivatives of Exponential Functions

$ a\;\; is\:\:a\;\;positive\:\:constant \\[3ex] k \:\:is\:\:a\;\:constant \\[3ex] (1.)\:\: y = e^x \\[3ex] \dfrac{dy}{dx} = e^x \\[7ex] (2.)\;\; y = e^{kx} \\[3ex] \dfrac{dy}{dx} = ke^{kx} \\[7ex] (3.)\;\; y = e^{-kx} \\[3ex] \dfrac{dy}{dx} = -ke^{kx} \\[7ex] (4.)\:\: y = a^x \\[3ex] \dfrac{dy}{dx} = a^x \ln a \\[7ex] $



Standard Derivatives of Logarithmic Functions

$ a\;\; is\:\:a\;\;positive\:\:constant \\[3ex] k \:\:is\:\:a\;\:constant \\[3ex] (1.)\:\: y = \ln x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x} \\[7ex] (2.)\:\: y = \log_a x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x \ln a} \\[7ex] (3.)\:\: y = \ln |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x} \\[7ex] (4.)\:\: y = \log_a |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x \ln a} \\[7ex] $



Standard Derivatives of Trigonometric Functions

$ (1.)\:\: y = \sin x \\[3ex] \dfrac{dy}{dx} = \cos x \\[7ex] (2.)\:\: y = \cos x \\[3ex] \dfrac{dy}{dx} = -\sin x \\[7ex] (3.)\:\: y = \tan x \\[3ex] \dfrac{dy}{dx} = \sec^2 x \\[7ex] (4.)\:\: y = \csc x \\[3ex] \dfrac{dy}{dx} = -\csc x \cot x \\[7ex] (5.)\:\: y = \sec x \\[3ex] \dfrac{dy}{dx} = \sec x \tan x \\[7ex] (6.)\:\: y = \cot x \\[3ex] \dfrac{dy}{dx} = -\csc^2 x $



Standard Derivatives of Inverse Trigonometric Functions

$ (1.)\:\: y = \sin^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{1 - x^2}} \\[7ex] (2.)\:\: y = \cos^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{\sqrt{1 - x^2}} \\[7ex] (3.)\;\; y = \tan^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 + x^2} \\[7ex] (4.)\:\: y = \csc^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{|x|\sqrt{x^2 - 1}} \\[7ex] (5.)\:\: y = \sec^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{|x|\sqrt{x^2 - 1}} \\[7ex] (6.)\;\; y = \cot^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{1 + x^2} \\[7ex] $



Standard Derivatives of Hyperbolic Functions

$ (1.)\:\: y = \sin hx \\[3ex] \dfrac{dy}{dx} = \cos hx \\[7ex] (2.)\:\: y = \cos hx \\[3ex] \dfrac{dy}{dx} = \sin hx \\[7ex] (3.)\;\; y = \tan x \\[3ex] \dfrac{dy}{dx} = \sec^2 hx \\[7ex] (4.)\;\; y = \csc hx \\[3ex] \dfrac{dy}{dx} = -\csc hx \cot hx \\[7ex] (5.)\;\; y = \sec hx \\[3ex] \dfrac{dy}{dx} = -\sec hx \tan hx \\[7ex] (6.)\;\; y = \cot hx \\[3ex] \dfrac{dy}{dx} = -\csc^2 hx \\[7ex] $



Standard Derivatives of Inverse Hyperbolic Functions

$ (1.)\:\: y = \sin h^{-1}x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{x^2 + 1}} \\[7ex] (2.)\:\: y = \cos h^{-1}x \;\;\;\;\;\;where:\;\; x\gt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{x^2 - 1}} \\[7ex] (3.)\;\; y = \tan h^{-1}x \;\;\;\;\;\;where:\;\; |x| \lt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 - x^2} \\[7ex] (4.)\;\; y = \csc h^{-1}x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{|x|\sqrt{x^2 + 1}} \\[7ex] (5.)\;\; y = \sec h^{-1}x \;\;\;\;\;\;where:\;\; 0\lt x \lt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{x\sqrt{1 - x^2}} \\[7ex] (6.)\;\; y = \cot h^{-1}x \;\;\;\;\;\;where:\;\; |x| \gt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 - x^2} \\[7ex] $



Standard Derivatives of Absolute Value Functions

$ (1.)\:\: y = |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{|x|}{x} \\[7ex] $



Newton's Method

$ x_{n + 1} = x_n - \dfrac{f(x)}{f'(x)} $

Formula Sheet: List of Formulae
(1.) (a.) (i.) Use the definition of the derivative as a limit to find $f'(x)$ for the function $f(x) = x^2 - 3$

(ii.) Hence, determine the value of $f''(5)$

(b.) Given that $y = \dfrac{\sin x}{\cos x}$, show that $\dfrac{dy}{dx} = \dfrac{1}{\cos^2 x}$

(c.) The equation of a curve is given by $y = (5x^2 - 7)^4$
Determine the equation of the gradient of the curve.


$ (a.) (i.) \\[3ex] \underline{\text{Derivative by Limits}} \\[3ex] f(x) = x^2 - 3 \\[4ex] f(x + h) = (x + h)^2 - 3 \\[4ex] = (x + h)(x + h) - 3 \\[3ex] = x^2 + xh + xh + h^2 - 3 \\[4ex] = x^2 + 2xh + h^2 - 3 \\[5ex] f(x + h) - f(x) = x^2 + 2xh + h^2 - 3 - (x^2 - 3) \\[4ex] = x^2 + 2xh + h^2 - 3 - x^2 + 3 \\[4ex] = 2xh + h^2 \\[4ex] = h(2x + h) \\[5ex] \dfrac{f(x + h) - f(x)}{h} = \dfrac{h(2x + h)}{h} \\[5ex] = 2x + h \\[5ex] f'(x) = \displaystyle{\lim_{h \to 0}}\:\:2x + h \\[4ex] f'(x) = 2x + 0 \\[3ex] f'(x) = 2x \\[5ex] (ii.) \\[3ex] \underline{\text{Derivative by Rules}} \\[3ex] f'(x) = 2x \\[3ex] f''(x) = 2 \\[3ex] f''(5) = 2 \\[5ex] (b.) \\[3ex] y = \dfrac{\sin x}{\cos x} \\[5ex] \underline{\text{Quotient Rule}} \\[3ex] u = \sin x \hspace{4em} v = \cos x \\[3ex] u' = \cos x \hspace{4em} v' = -\sin x \\[5ex] \dfrac{dy}{dx} = \dfrac{vu' - uv'}{v^2} \\[6ex] = \dfrac{\cos x(\cos x) - \sin x(-\sin x)}{\cos^2 x} \\[6ex] = \dfrac{\cos^2 x + \sin^2 x}{\cos^2 x} \\[5ex] \cos^2 x + \sin^2 x = 1 ...\text{Pythagorean Identity} \\[4ex] = \dfrac{1}{\cos^2 x} \\[6ex] $ The equation of the gradient of the curve is the derivative of the curve

$ (c.) \\[3ex] y = (5x^2 - 7)^4 \\[4ex] \underline{\text{Chain Rule}} \\[3ex] Let\;\;p = 5x^2 - 7 \hspace{4em} y = p^4 \\[4ex] \dfrac{dp}{dx} = 10x \hspace{5em} \dfrac{dy}{dp} = 4p^3 \\[6ex] \dfrac{dy}{dx} = \dfrac{dy}{dp} * \dfrac{dp}{dx} \\[5ex] = 4p^3 * 10x \\[4ex] = 40xp^3 \\[4ex] = 40x(5x^2 - 7)^3 $
(2.)


(3.)


(4.)


(5.)


(6.)


(7.)


(8.)


(9.)


(10.)


(11.)


(12.)


(13.)


(14.)


(15.)


(16.)


(17.)


(18.)


(19.)


(20.)






Top




(21.)


(22.)


(23.)


(24.)


(25.)


(26.)


(27.)


(28.)


(29.)


(30.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.