Please Read Me.

Expressions and Equations

Welcome to Our Site


I greet you this day,

These are the solutions to the CSEC Additional Mathematics past questions on Expressions and Equations.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and helpful in your passing the Additional Mathematics test of the CSEC, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

These are the notable notes regarding factoring

Factoring Formulas

$ \underline{Difference\;\;of\;\;Two\;\;Squares} \\[3ex] (1.)\;\;x^2 - y^2 = (x + y)(x - y) \\[5ex] \underline{Difference\;\;of\;\;Two\;\;Cubes} \\[3ex] (2.)\;\; x^3 - y^3 = (x - y)(x^2 + xy + y^2) \\[5ex] \underline{Sum\;\;of\;\;Two\;\;Cubes} \\[3ex] (3.)\;\; x^3 + y^3 = (x + y)(x^2 - xy + y^2) \\[4ex] $

Formulas Relating to Quadratic Expressions and Equations

$ (1.)\;\; Discriminant = b^2 - 4ac \\[5ex] (2.)\;\; \text{Quadratic Formula}:\;\; x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\[6ex] (3.)\;\; \text{Sum of roots} = \alpha + \beta = -\dfrac{b}{a} \\[5ex] (4.)\;\; \text{Product of roots} = \alpha\beta = \dfrac{c}{a} $
Formula Sheet: List of Formulae
(1.) The equation $kx^2 + x - 15 = 10$ has roots α and β, where kW.
(a.) Determine expressions for
(i.) α + β
(ii.) αβ

(b.) Given that $\alpha^2 + \beta^2 = \dfrac{61}{4}$, use the expressions in (a.)(i.) to determine the value of k.


$ kx^2 + x - 15 = 10 \\[4ex] Comparing\;\;to\;\;ax^2 + bx + c = 0 \\[4ex] a = k \\[3ex] b = 1 \\[3ex] c = -15 \\[3ex] (i.) \\[3ex] \alpha + \beta = -\dfrac{b}{a} = -\dfrac{1}{k} \\[5ex] (ii.) \\[3ex] \alpha\beta = \dfrac{c}{a} = -\dfrac{15}{k} \\[5ex] (\alpha + \beta)^2 = (\alpha + \beta)(\alpha + \beta) \\[4ex] = \alpha^2 + \alpha\beta + \alpha\beta + \beta^2 \\[4ex] = \alpha^2 + 2\alpha\beta + \beta^2 \\[4ex] = \alpha^2 + \beta^2 + 2\alpha\beta \\[4ex] \implies \\[3ex] \alpha^2 + \beta^2 + 2\alpha\beta = (\alpha + \beta)^2 \\[4ex] \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \\[4ex] = \left(-\dfrac{1}{k}\right)^2 - 2\left(-\dfrac{15}{k}\right) \\[6ex] = \dfrac{1}{k^2} + \dfrac{30}{k} \\[5ex] \implies \\[3ex] \dfrac{1}{k^2} + \dfrac{30}{k} = \dfrac{61}{4} \\[5ex] \dfrac{1 + 30k}{k^2} = \dfrac{61}{4} \\[5ex] 61k^2 = 4(1 + 30k) \\[4ex] 61k^2 = 4 + 120k \\[4ex] 61k^2 - 120k - 4 = 0 \\[4ex] Factors\;\;are\;\;2k \;\;and\;\; -122k \\[3ex] \implies \\[3ex] 61k^2 + 2k - 122k - 4 = 0 \\[4ex] k(61k + 2) - 2(61k + 2) = 0 \\[3ex] (61k + 2)(k - 2) = 0 \\[3ex] 61k + 2 = 0 \;\;\;OR\;\;\; k - 2 = 0 \\[3ex] 61k = -2 \;\;\;OR\;\;\; k = 2 \\[3ex] k = -\dfrac{2}{61} \;\;\;OR\;\;\; k = 2 \\[5ex] \text{Because k is an element of the set of Whole Numbers}, \;\; k = 2 $
(2.)


(3.) Rationalize the denominator of the expression $\dfrac{1 + \sqrt{2}}{3 - \sqrt{2}}$


$ \dfrac{1 + \sqrt{2}}{3 - \sqrt{2}} \\[5ex] = \dfrac{1 + \sqrt{2}}{3 - \sqrt{2}} * \dfrac{3 + \sqrt{2}}{3 + \sqrt{2}} \\[5ex] = \dfrac{3 + \sqrt{2} + 3\sqrt{2} + 2}{3^2 - (\sqrt{2})^2} \\[6ex] = \dfrac{5 + 4\sqrt{2}}{9 - 2} \\[5ex] = \dfrac{5 + 4\sqrt{2}}{7} $

Calculator 3
(4.)


(5.)


(6.)


(7.)


(8.)


(9.)


(10.)


(11.)


(12.)


(13.)


(14.)


(15.)


(16.)


(17.)


(18.)


(19.)


(20.)






Top




(21.)


(22.)


(23.)


(24.)


(25.)


(26.)


(27.)


(28.)


(29.)


(30.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.