Please Read Me.

Relations and Functions

Welcome to Our Site


I greet you this day,

These are the solutions to the CSEC Additional Mathematics past questions on Relations and Functions.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and helpful in your passing the Additional Mathematics test of the CSEC, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Formulas for Linear Functions

$ (1.)\;\; \text{Slope,}\;\; m = \dfrac{\Delta y}{\Delta x} = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{rise}{run} \\[5ex] (2.)\;\; \text{Slope-Intercept Form:}\;\; y = mx + b \\[5ex] (3.)\;\; \text{Point-Slope Form:}\;\; y - y_1 = m(x - x_1) \\[5ex] (4.)\;\; \text{Two-Points Form:}\;\; \dfrac{y - y_1}{x - x_1} = \dfrac{y_2 - y_1}{x_2 - x_1} \\[5ex] $

Formulas for Quadratic Functions

$ (1.)\;\; \text{Discriminant}\;\; = b^2 - 4ac \\[5ex] (2.)\;\; \text{Standard Form:}\;\; f(x) = ax^2 + bx + c \\[5ex] (3.)\;\; \text{Vertex from Standard Form:}\;\; \left[-\dfrac{b}{2a}, f\left(-\dfrac{b}{2a}\right)\right] \\[7ex] (4.)\;\; \text{Vertex Form:}\;\; f(x) = a(x - h)^2 + k \\[5ex] (5.)\;\; \text{Vertex from Vertex Form:}\;\; Vertex = (h, k) \\[5ex] (6.)\;\; \text{Extended Vertex Form:}\;\; f(x) = a\left(x + \dfrac{b}{2a}\right)^2 + \dfrac{4ac - b^2}{4a} \\[7ex] (7.)\;\; \text{Vertex from Extended Vertex Form:}\;\; Vertex = \left(-\dfrac{b}{2a}, \dfrac{4ac - b^2}{4a}\right) \\[7ex] $

Factoring Formulas

$ \underline{Difference\;\;of\;\;Two\;\;Squares} \\[3ex] (1.)\;\;x^2 - y^2 = (x + y)(x - y) \\[5ex] \underline{Difference\;\;of\;\;Two\;\;Cubes} \\[3ex] (2.)\;\; x^3 - y^3 = (x - y)(x^2 + xy + y^2) \\[5ex] \underline{Sum\;\;of\;\;Two\;\;Cubes} \\[3ex] (3.)\;\; x^3 + y^3 = (x + y)(x^2 - xy + y^2) \\[4ex] $
Formula Sheet: List of Formulae
(1.) For the quadratic function $g(x) = -5x^2 - 4x + 2$, determine the exact value of the maximum point and the range using the method of completing the square, or otherwise.


We can solve this question using at least two approches.
Use any approach you prefer.

$ \underline{\text{1st Approach: Completing the Square Method}} \\[3ex] g(x) = -5x^2 - 4x + 2 \\[4ex] = -5\left(x^2 + \dfrac{4x}{5} - \dfrac{2}{5}\right) \\[5ex] \text{Coefficient of }x = \dfrac{4}{5} \\[5ex] \text{Half of it} = \dfrac{1}{2} * \dfrac{4}{5} = \dfrac{2}{5} \\[5ex] \text{Square it} = \left(\dfrac{2}{5}\right)^2 \\[6ex] \implies \\[3ex] = -5\left[x^2 + \dfrac{4x}{5} + \left(\dfrac{2}{5}\right)^2 - \dfrac{2}{5} - \left(\dfrac{2}{5}\right)^2\right] \\[6ex] = -5\left[\left(x + \dfrac{2}{5}\right)^2 - \dfrac{2}{5} - \dfrac{4}{25}\right] \\[6ex] = -5\left[\left(x + \dfrac{2}{5}\right)^2 - \dfrac{10}{25} - \dfrac{4}{25}\right] \\[6ex] = -5\left[\left(x + \dfrac{2}{5}\right)^2 - \dfrac{14}{25}\right] \\[6ex] = -5\left(x + \dfrac{2}{5}\right)^2 + \dfrac{14}{5} \\[6ex] = a(x - h)^2 + k \\[4ex] \implies \\[3ex] (i.) \\[3ex] \text{Vertex = Maximum Point} = (h, k) = \left(-\dfrac{2}{5}, \dfrac{14}{5}\right) \\[7ex] \underline{\text{2nd Approach: Vertex from Standard Form Method}} \\[3ex] g(x) = -5x^2 - 4x + 2...\text{Standard Form} \\[4ex] \text{Compare to: } g(x) = ax^2 + bx + c \\[4ex] a = -5 \\[3ex] b = -4 \\[3ex] c = 2 \\[3ex] -\dfrac{b}{2a} = \dfrac{-(-4)}{2(-5)} = \dfrac{2}{-5} = -\dfrac{2}{5} \\[5ex] g\left(-\dfrac{b}{2a}\right) = g\left(-\dfrac{2}{5}\right) \\[3ex] = -5\left(-\dfrac{2}{5}\right)^2 - 4\left(-\dfrac{2}{5}\right) + 2 \\[6ex] = -5\left(\dfrac{4}{25}\right) + \dfrac{8}{5} + \dfrac{10}{5} \\[5ex] = \dfrac{-4}{5} + \dfrac{8}{5} + \dfrac{10}{5} \\[5ex] = \dfrac{-4 + 8 + 10}{5} \\[5ex] = \dfrac{14}{5} \\[5ex] \text{Vertex = Maximum Point} = \text{Vertex from Standard Form:} \\[3ex] \implies \\[3ex] \left[-\dfrac{b}{2a}, g\left(-\dfrac{b}{2a}\right)\right] = \left(-\dfrac{2}{5}, \dfrac{14}{5}\right) \\[7ex] (ii.) \\[3ex] Range = \left(-\infty, \dfrac{14}{5}\right] $
(2.)


(3.)


(4.)


(5.)


(6.)


(7.)


(8.)


(9.)


(10.)


(11.)


(12.)


(13.)


(14.)


(15.)


(16.)


(17.)


(18.)


(19.)


(20.)






Top




(21.)


(22.)


(23.)


(24.)


(25.)


(26.)


(27.)


(28.)


(29.)


(30.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.