Processing math: 0%
Please Read Me.

Trigonometry

Welcome to Our Site

Good morning.
I greet you this day, Fri Apr 04 2025 06:56:37 GMT+0000 (Coordinated Universal Time).
These are the solutions to the CSEC Additional Mathematics past questions on the topics in Trigonometry.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and if of these resources were helpful in your passing the Additional Mathematics test of the CSEC, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.


Please NOTE: For applicable questions (questions that require the angle in degrees), if you intend to use the TI-84 Family:
Please make sure you set the MODE to DEGREE.
It is RADIAN by default. So, it needs to be set to DEGREE.

Calculator Mode

Formula Sheet: List of Formulae

Trigonometric Functions

Right Triangle Trigonometry for any angle, say θ
Pneumonic for it is: SOHCAHTOA and cosecHOsecHAcotanAO

(1.)sinθ=opphyp(2.)cosθ=adjhyp(3.)tanθ=sinθcosθ=sinθ÷cosθ=opphyp÷adjhyp=opphyphypadj

Summary: The Unit Circle

\theta in DEG \theta in RAD \sin \theta \cos \theta \tan \theta \csc \theta \sec \theta \cot \theta
0 0 0 1 0 undefined 1 undefined
30 \dfrac{\pi}{6} \dfrac{1}{2} \dfrac{\sqrt{3}}{2} \dfrac{\sqrt{3}}{3} 2 \dfrac{2\sqrt{3}}{3} \sqrt{3}
45 \dfrac{\pi}{4} \dfrac{\sqrt{2}}{2} \dfrac{\sqrt{2}}{2} 1 \sqrt{2} \sqrt{2} 1
60 \dfrac{\pi}{3} \dfrac{\sqrt{3}}{2} \dfrac{1}{2} \sqrt{3} \dfrac{2\sqrt{3}}{3} 2 \dfrac{\sqrt{3}}{3}
90 \dfrac{\pi}{2} 1 0 undefined 1 undefined 0
120 \dfrac{2\pi}{3} \dfrac{\sqrt{3}}{2} -\dfrac{1}{2} -\sqrt{3} \dfrac{2\sqrt{3}}{3} -2 -\dfrac{\sqrt{3}}{3}
135 \dfrac{3\pi}{4} \dfrac{\sqrt{2}}{2} -\dfrac{\sqrt{2}}{2} -1 \sqrt{2} -\sqrt{2} -1
150 \dfrac{5\pi}{6} \dfrac{1}{2} -\dfrac{\sqrt{3}}{2} -\dfrac{\sqrt{3}}{3} 2 -\dfrac{2\sqrt{3}}{3} -\sqrt{3}
180 \pi 0 -1 0 undefined -1 undefined
210 \dfrac{7\pi}{6} -\dfrac{1}{2} -\dfrac{\sqrt{3}}{2} \dfrac{\sqrt{3}}{3} -2 -\dfrac{2\sqrt{3}}{3} \sqrt{3}
225 \dfrac{5\pi}{4} -\dfrac{\sqrt{2}}{2} -\dfrac{\sqrt{2}}{2} 1 -\sqrt{2} -\sqrt{2} 1
240 \dfrac{4\pi}{3} -\dfrac{\sqrt{3}}{2} -\dfrac{1}{2} \sqrt{3} -\dfrac{2\sqrt{3}}{3} -2 \dfrac{\sqrt{3}}{3}
270 \dfrac{3\pi}{2} -1 0 undefined -1 undefined 0
315 \dfrac{7\pi}{4} -\dfrac{\sqrt{2}}{2} \dfrac{\sqrt{2}}{2} -1 -\sqrt{2} \sqrt{2} -1
300 \dfrac{5\pi}{3} -\dfrac{\sqrt{3}}{2} \dfrac{1}{2} -\sqrt{3} -\dfrac{2\sqrt{3}}{3} 2 -\dfrac{\sqrt{3}}{3}
330 \dfrac{11\pi}{6} -\dfrac{1}{2} \dfrac{\sqrt{3}}{2} -\dfrac{\sqrt{3}}{3} -2 \dfrac{2\sqrt{3}}{3} -\sqrt{3}
360 2\pi 0 1 0 undefined 1 undefined

Trigonometric Identities

\begin{array}{c | c} II & I \\ \hline III & IV \end{array} = \begin{array}{c | c} S & A \\ \hline T & C \end{array} = \begin{array}{c | c} Sine\:\: is\:\: positive & All\:\: are\:\: positive \\ \hline Tangent\:\: is\:\: positive & Cosine\:\: is\:\: positive \end{array}



The pneumonic to remember it:
First Quadrant to Fourth Quadrant (clockwise direction): A-C-T-S (ACTS of the Apostles)

First Quadrant to Fourth Quadrant (counter-clockwise direction): A-S-T-C: ADD - SUGAR - TO - COFFEE

Fourth Quadrant to Third Quadrant (counter-clockwise direction): C-A-S-T (Simon Peter, CAST your net into the sea.)

Second Quadrant to Third Quadrant (clockwise direction): S-A-C-T

Cofunction Identities (Identities of Complements)
First Quadrant Identities
First Quadrant: All (sine, cosine, tangent) are positive
This implies that cosecant, secant, and cotangent are also positive.

Given: two angles say: \alpha and \beta;
If \alpha and \beta are complementary, then the:
Sine function and the Cosine functions are cofunctions

\sin \alpha = \cos \beta \\[3ex] \cos \alpha = \sin \beta \\[3ex] Tangent function and the Cotangent functions are cofunctions

\tan \alpha = \cot \beta \\[3ex] \cot \alpha = \tan \beta \\[3ex] Secant function and the Cosecant functions are cofunctions

\sec \alpha = \csc \beta \\[3ex] \csc \alpha = \sec \beta \\[3ex] Given: one angle say: \theta;
First Quadrant Identities or Cofunction Identities or Identities of Complements

0 \lt \theta \lt 90 ...Angle\:\: in\:\: Degrees \\[3ex] Reference Angle = \theta ... Angle in Degrees

0 \lt \theta \lt \dfrac{\pi}{2} ...Angle\:\: in\:\: Radians \\[5ex] Reference Angle = \theta ... Angle in Radians

First Quadrant: sine, cosine, tangent are positive
This implies that cosecant, secant, and cotangent are also positive

Complement of \theta = 90 - \theta where \theta is in degrees:

Complement of \theta = \dfrac{\pi}{2} - \theta where \theta is in radians:

(1.)\:\: \sin \theta = \cos (90 - \theta) \\[3ex] (2.)\:\: \sin \theta = \cos \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (3.)\:\: \cos \theta = \sin (90 - \theta) \\[3ex] (4.)\:\: \cos \theta = \sin \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (5.)\:\: \tan \theta = \cot (90 - \theta) \\[3ex] (6.)\:\: \tan \theta = \cot \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (7.)\:\: \cot \theta = \tan (90 - \theta) \\[3ex] (8.)\:\: \cot \theta = \tan \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (9.)\:\: \sec \theta = \csc (90 - \theta) \\[3ex] (10.)\:\: \sec \theta = \csc \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (11.)\:\: \csc \theta = \sec (90 - \theta) \\[3ex] (12.)\:\: \csc \theta = \sec \left(\dfrac{\pi}{2} - \theta \right) \\[7ex] Second Quadrant Identities or Identities of Supplements

90 \lt \theta \lt 180 ... Angle in Degrees
Reference Angle = 180 - \theta ... Angle in Degrees
\dfrac{\pi}{2} \lt \theta \lt \pi ... Angle in Radians
Reference Angle = \pi - \theta ... Angle in Radians
Second Quadrant: sine is positive
This implies that cosecant is also positive
Symmetric across the y-axis

Given: one angle say: \theta;
Supplement of \theta = 180 - \theta where \theta is in degrees:
Supplement of \theta = \pi - \theta where \theta is in radians:

(1.)\;\; \sin \theta = \sin (180 - \theta) \\[3ex] (2.)\;\; \sin (180 - \theta) = \sin \theta \\[3ex] (3.)\;\; \sin \theta = \sin (\pi - \theta) \\[3ex] (4.)\;\; \sin (\pi - \theta) = \sin \theta \\[3ex] (5.)\;\; \cos \theta = -\cos (180 - \theta) \\[3ex] (6.)\;\; \cos (180 - \theta) = -\cos \theta \\[3ex] (7.)\;\; \cos \theta = -\cos (\pi - \theta) \\[3ex] (8.)\;\; \cos (\pi - \theta) = -\cos \theta \\[3ex] (9.)\;\; \tan \theta = -\tan (180 - \theta) \\[3ex] (10.)\;\; \tan (180 - \theta) = -\tan \theta \\[3ex] (11.)\;\; \tan \theta = -\tan (\pi - \theta) \\[3ex] (12.)\;\; \tan (\pi - \theta) = -\tan \theta \\[5ex] Third Quadrant Identities
180 \lt \theta \lt 270 ... Angle in Degrees
Reference Angle = \theta - 180 ... Angle in Degrees
\pi \lt \theta \lt \dfrac{3\pi}{2} ... Angle in Radians
Reference Angle = \theta - \pi ... Angle in Radians
Third Quadrant: tangent is positive
This implies that cotangent is also positive
Symmetric across the origin

Given: one angle say: \theta;

(1.)\;\; \sin \theta = -\sin (\theta - 180) \\[3ex] (2.)\;\; \sin (\theta - 180) = -\sin \theta \\[3ex] (3.)\;\; \sin \theta = -\sin (\theta - \pi) \\[3ex] (4.)\;\; \sin (\theta - \pi) = -\sin \theta \\[3ex] (5.)\;\; \cos \theta = -\cos (\theta - 180) \\[3ex] (6.)\;\; \cos (\theta - 180) = -\cos \theta \\[3ex] (7.)\;\; \cos \theta = -\cos (\theta - \pi) \\[3ex] (8.)\;\; \cos (\theta - \pi) = -\cos \theta \\[3ex] (9.)\;\; \tan \theta = \tan (\theta - 180) \\[3ex] (10.)\;\; \tan (\theta - 180) = \tan \theta \\[3ex] (11.)\;\; \tan \theta = \tan (\theta - \pi) \\[3ex] (12.)\;\; \tan (\theta - \pi) = \tan \theta \\[5ex] Fourth Quadrant Identities
270 \lt \theta \lt 360 ... Angle in Degrees
Reference Angle = 360 - \theta ... Angle in Degrees
\dfrac{3\pi}{2} \lt \theta \lt 2\pi ... Angle in Radians
Reference Angle = 2\pi - \theta ... Angle in Radians
Fourth Quadrant: cosine is positive
This implies that secant is also positive
Symmetric across the x-axis

Given: one angle say: \theta;

(1.)\;\; \sin \theta = -\sin (360 - \theta) \\[3ex] (2.)\;\; \sin (360 - \theta) = -\sin \theta \\[3ex] (3.)\;\; \sin \theta = -\sin (2\pi - \theta) \\[3ex] (4.)\;\; \sin (2\pi - \theta) = -\sin \theta \\[3ex] (5.)\;\; \cos \theta = \cos (360 - \theta) \\[3ex] (6.)\;\; \cos (360 - \theta) = \cos \theta \\[3ex] (7.)\;\; \cos \theta = \cos (2\pi - \theta) \\[3ex] (8.)\;\; \cos (2\pi - \theta) = \cos \theta \\[3ex] (9.)\;\; \tan \theta = -\tan (360 - \theta) \\[3ex] (10.)\;\; \tan (360 - \theta) = -\tan \theta \\[3ex] (11.)\;\; \tan \theta = -\tan (2\pi - \theta) \\[3ex] (12.)\;\; \tan (2\pi - \theta) = -\tan \theta \\[3ex] Reciprocal Identities

(1.)\;\; \csc \theta = \dfrac{1}{\sin \theta} \\[3ex] (2.)\;\; \sec \theta = \dfrac{1}{\cos \theta} \\[3ex] (3.)\;\; \cot \theta = \dfrac{1}{\tan \theta} \\[3ex] From Reciprocal Identities

(1.)\;\; \sin \theta = \dfrac{1}{\csc \theta} \\[3ex] (2.)\;\; \cos \theta = \dfrac{1}{\sec \theta} \\[3ex] (3.)\;\; \tan \theta = \dfrac{1}{\cot \theta} \\[5ex] Quotient Identities
(1.)\;\; \tan \theta = \dfrac{\sin \theta}{\cos \theta} \\[3ex] (2.)\;\; \cot \theta = \dfrac{\cos \theta}{\sin \theta} \\[3ex] As you can see, \cot \theta has two formulas

\cot \theta = \dfrac{1}{\tan \theta} \\[5ex] \cot \theta = \dfrac{\cos \theta}{\sin \theta} \\[5ex] Sometimes, we shall use the first one. Sometimes, we shall use the second one.
We have to use the formula that will not give us an undefined value (where the denominator is zero)

Even Identities
Recall: a function, say f(x) is even if f(-x) = f(x)
In Trigonometry, the cosine function and the secant function are even functions.

(1.)\;\; \cos (-\theta) = \cos \theta \\[3ex] (2.)\;\; \sec (-\theta) = \sec \theta \\[5ex] Odd Identities
Recall: a function, say f(x) is odd if f(-x) = -f(x)
In Trigonometry, the sine function, the cosecant function, the tangent function, and the cotangent function are odd functions.

(1.)\;\; \sin (-\theta) = -\sin \theta \\[3ex] (2.)\;\; \csc (-\theta) = -\csc \theta \\[3ex] (3.)\;\; \tan (-\theta) = -\tan \theta \\[3ex] (4.)\;\; \cot (-\theta) = -\cot \theta \\[5ex] Pythagorean Identities

(1.)\;\; \sin^2 \theta + \cos^2 \theta = 1 \\[3ex] (2.)\;\; \tan^2 \theta + 1 = \sec^2 \theta \\[3ex] (3.)\;\; \cot^2 \theta + 1 = \csc^2 \theta \\[3ex] From Pythagorean Identities

(1.)\;\; \sin \theta = \pm \sqrt{1 - \cos^2 \theta} \\[3ex] (2.)\;\; \cos \theta = \pm \sqrt{1 - \sin^2 \theta} \\[3ex] (3.)\;\; \tan \theta = \pm \sqrt{\sec^2 \theta - 1} \\[3ex] (4.)\;\; \sec \theta = \pm \sqrt{\tan^2 \theta + 1} \\[3ex] (5.)\;\; \cot \theta = \pm \sqrt{\csc^2 \theta - 1} \\[3ex] (6.)\;\; \csc \theta = \pm \sqrt{\cot^2 \theta + 1}

Trigonometric Formulas

Sum and Difference Formulas

(1.)\;\; \sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\[3ex] (2.)\;\; \cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\[3ex] (3.)\;\; \tan (\alpha \pm \beta) = \dfrac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \\[5ex] Half-Angle Formulas

(1.)\;\; \sin \dfrac{\theta}{2} = \pm \sqrt{\dfrac{1 - \cos \theta}{2}} \\[5ex] (2.)\;\; \cos {\theta \over 2} = \pm \sqrt{\dfrac{1 + \cos \theta}{2}} \\[5ex] (3.)\;\; \tan {\theta \over 2} = \pm \sqrt{\dfrac{1 - \cos \theta}{1 + \cos \theta}} \\[5ex] (4.)\;\; \tan {\theta \over 2} = \dfrac{\sin \theta}{1 + \cos \theta} \\[5ex] (5.)\;\; \tan {\theta \over 2} = \dfrac{1 - \cos \theta}{\sin \theta} \\[5ex] Formulas from Half-Angle Formulas

(1.)\;\; \sin^2 \dfrac{\theta}{2} = \dfrac{1 - \cos \theta}{2} \\[5ex] (2.)\;\; \cos^2 \dfrac{\theta}{2} = \dfrac{1 + \cos \theta}{2} \\[5ex] (3.)\;\; \tan^2 \dfrac{\theta}{2} = \dfrac{1 - \cos \theta}{1 + \cos \theta} \\[7ex] Double-Angle Formulas

(1.)\;\; \sin (2\theta) = 2 \sin \theta \cos \theta \\[3ex] (2.)\;\; \cos (2\theta) = \cos^2 \theta - \sin^2 \theta \\[3ex] (3.)\;\; \cos (2\theta) = 1 - 2\sin^2 \theta \\[3ex] (4.)\;\; \cos (2\theta) = 2\cos^2 \theta - 1 \\[3ex] (5.)\;\; \tan (2\theta) = \dfrac{2\tan \theta}{1 - \tan^2 \theta} \\[5ex] Formulas from Double-Angle Formulas

(1.)\;\; \sin^2 \theta = \dfrac{1 - \cos(2\theta)}{2} \\[5ex] (2.)\;\; \cos^2 \theta = \dfrac{1 + \cos(2\theta)}{2} \\[5ex] (3.)\;\; \tan^2 \theta = \dfrac{1 - \cos(2\theta)}{1 + \cos(2\theta)} \\[7ex] Triple-Angle Formulas

(1.)\;\; \sin (3\theta) = 3 \sin \theta - 4\sin^3 \theta \\[3ex] (2.)\;\; \cos (3\theta) = 4 \cos^3 \theta - 3 \cos \theta \\[3ex] (3.)\;\; \tan (3\theta) = \dfrac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} \\[7ex] Sum-to-Product Formulas

(1.)\;\; \sin \alpha + \sin \beta = 2 \sin \left(\dfrac{\alpha + \beta}{2}\right) \cos \left(\dfrac{\alpha - \beta}{2}\right) \\[5ex] (2.)\;\; \sin \alpha - \sin \beta = 2 \sin \left(\dfrac{\alpha - \beta}{2}\right) \cos \left(\dfrac{\alpha + \beta}{2}\right) \\[5ex] (3.)\;\; \cos \alpha + \cos \beta = 2 \cos \left(\dfrac{\alpha + \beta}{2}\right) \cos \left(\dfrac{\alpha - \beta}{2}\right) \\[5ex] (4.)\;\; \cos \alpha - \cos \beta = -2 \sin \left(\dfrac{\alpha + \beta}{2}\right) \sin \left(\dfrac{\alpha - \beta}{2}\right) \\[5ex] Ask students to write the compact form / shortened form of the first two Sum-to-Product Formulas.

Sum-to-Product Formulas (Compact Form of the First Two Formulas)

(1.)\;\; \sin \alpha \pm \sin \beta = 2 \sin \dfrac{\alpha \pm \beta}{2} \cos \dfrac{\alpha \mp \beta}{2} \\[7ex] Product-to-Sum Formulas

(1.) \sin \alpha * \sin \beta = \dfrac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)] \\[5ex] (2.) \cos \alpha * \cos \beta = \dfrac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)] \\[5ex] (3.) \sin \alpha * \cos \beta = \dfrac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha + \beta)] \\[5ex]

Factoring Formulas

x is any trigonometric ratio
y is any trigonometric ratio

\underline{Difference\;\;of\;\;Two\;\;Squares} \\[3ex] (1.)\;\;x^2 - y^2 = (x + y)(x - y) \\[5ex] \underline{Difference\;\;of\;\;Two\;\;Cubes} \\[3ex] (2.)\;\; x^3 - y^3 = (x - y)(x^2 + xy + y^2) \\[5ex] \underline{Sum\;\;of\;\;Two\;\;Cubes} \\[3ex] (3.)\;\; x^3 + y^3 = (x + y)(x^2 - xy + y^2) \\[5ex]

Triangle Laws

Pythagorean Theorem:
Applies only to right triangles.
In a right triangle, the square of the length of the hypotenuse is the sum of the squares of the other two sides.

hyp^2 = leg^2 + leg^2

x is any trigonometric ratio
y is any trigonometric ratio

Sine Law:
Applies to all triangles.
It states that the ratio of the side length of any triangle to the sine of the angle measure opposite that side is the same for the three sides of the triangle.

\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} \\[5ex] OR

The ratio of the angle measure of any triangle to the side length opposite that angle is the same for the three angles of the triangle.

\dfrac{\sin A}{a} = \dfrac{\sin B}{b} = \dfrac{\sin C}{c} \\[5ex] Cosine Law:
Applies to all triangles.
It states that the square of a side of a triangle is the difference between the sum of the squares of the other two sides and twice the product of the two sides and the included angle.

a^2 = b^2 + c^2 - 2bc \cos A \\[3ex] \cos A = \dfrac{b^2 + c^2 - a^2}{2bc} \\[5ex] A = \cos^{-1} \left(\dfrac{b^2 + c^2 - a^2}{2bc}\right) \\[5ex] b^2 = a^2 + c^2 - 2ac \cos B \\[3ex] \cos B = \dfrac{a^2 + c^2 - b^2}{2ac} \\[5ex] B = \cos^{-1} \left(\dfrac{a^2 + c^2 - b^2}{2ac}\right) \\[5ex] c^2 = a^2 + b^2 - 2ab \cos C \\[3ex] \cos C = \dfrac{a^2 + b^2 - c^2}{2ab} \\[5ex] C = \cos^{-1} \left(\dfrac{a^2 + b^2 - c^2}{2ab}\right) \\[5ex]

Circle Formulas

Except stated otherwise, use:

d = diameter \\[3ex] r = radius \\[3ex] L = arc\:\:length \\[3ex] A = area\;\;of\;\;sector \\[3ex] P = perimeter\;\;of\;\;sector \\[3ex] \theta = central\:\:angle \\[3ex] \pi = \dfrac{22}{7} \\[5ex] RAD = radians \\[3ex] ^\circ = DEG = degrees \\[7ex] \underline{\theta\;\;in\;\;DEG} \\[3ex] L = \dfrac{2\pi r\theta}{360} \\[5ex] \theta = \dfrac{180L}{\pi r} \\[5ex] r = \dfrac{180L}{\pi \theta} \\[5ex] A = \dfrac{\pi r^2\theta}{360} \\[5ex] \theta = \dfrac{360A}{\pi r^2} \\[5ex] r = \dfrac{360A}{\pi\theta} \\[5ex] P = \dfrac{r(\pi\theta + 360)}{180} \\[7ex] \underline{\theta\;\;in\;\;RAD} \\[3ex] L = r\theta \\[5ex] \theta = \dfrac{L}{r} \\[5ex] r = \dfrac{L}{\theta} \\[5ex] A = \dfrac{r^2\theta}{2} \\[5ex] \theta = \dfrac{2A}{r^2} \\[5ex] r = \sqrt{\dfrac{2A}{\theta}} \\[5ex] P = r(\theta + 2) \\[7ex] Circumference\:\:of\:\:a\:\:circle = 2\pi r = \pi d \\[3ex] L = \dfrac{2A}{r} \\[5ex] r = \dfrac{2A}{L} \\[5ex] A = \dfrac{Lr}{2}

(1.) (a.) A compass is used to draw a sector of radius 6 cm and area 11.32 cm².
(i.) Determine the angle of the sector in radians.
(ii.) Calculate the perimeter of the sector.

(b.) A right-angled triangle has an angle, θ, where \sin \theta = \dfrac{\sqrt{5}}{5}
Without evaluating θ, calculate the exact value (in surd form if applicable) of:
(i.) \cos\theta
(ii.) \sin 2\theta

(c.) Show that \tan^2\theta + 1 = \dfrac{1}{\cos^2\theta}


(a.) \\[3ex] radius, r = 6\;cm \\[3ex] Area, A = 11.32\;cm^2 \\[3ex] \underline{\text{Angle in Radians}} \\[3ex] (i.) \\[3ex] \theta = \dfrac{2A}{r^2} \\[5ex] = \dfrac{2(11.32)}{6^2} \\[5ex] = 0.6288888889\;RAD \\[5ex] (ii.) \\[3ex] P = r(\theta + 2) \\[3ex] = 6(0.6288888889 + 2) \\[3ex] = 6(2.6288888889) \\[3ex] = 15.77333333\;cm \\[5ex] (b.) \\[3ex] \sin\theta = \dfrac{\sqrt{5}}{5} = \dfrac{opp}{hyp}...SOHCAHTOA \\[5ex] opp = \sqrt{5} \\[3ex] hyp = 5 \\[3ex] adj^2 + opp^2 = hyp^2 ...\text{Pythagorean Theorem} \\[3ex] adj^2 + (\sqrt{5})^2 = 5^2 \\[3ex] adj^2 + 5 = 25 \\[3ex] adj^2 = 25 - 5 \\[3ex] adj^2 = 20 \\[3ex] adj = \sqrt{20} \\[3ex] = \sqrt{4 * 5} \\[3ex] = \sqrt{4} * \sqrt{5} \\[3ex] = 2\sqrt{5} \\[5ex] (i.) \\[3ex] \cos\theta = \dfrac{adj}{hyp} = \dfrac{2\sqrt{5}}{5} \\[5ex] (ii.) \\[3ex] \sin 2\theta \\[3ex] = \sin(\theta + \theta) \\[3ex] = \sin\theta\cos\theta + \cos\theta\sin\theta ...\text{Sum Formula} \\[3ex] = \sin\theta\cos\theta + \sin\theta\cos\theta \\[3ex] = 2\sin\theta\cos\theta \\[3ex] = 2 * \dfrac{\sqrt{5}}{5} * \dfrac{2\sqrt{5}}{5} \\[5ex] = \dfrac{4 * 5}{5 * 5} \\[5ex] = \dfrac{4}{5} \\[5ex] (c.) \\[3ex] \tan^2\theta + 1 = \dfrac{1}{\cos^2\theta} \\[5ex] From\;\;LHS \\[3ex] \tan^2\theta + 1 \\[5ex] \tan\theta = \dfrac{\sin\theta}{\cos\theta} ...\text{Quotient Identity} \\[5ex] \implies \\[3ex] = \dfrac{\sin^2\theta}{\cos^2\theta} + 1 \\[5ex] = \dfrac{\sin^2\theta}{\cos^2\theta} + \dfrac{\cos^2\theta}{\cos^2\theta} \\[5ex] = \dfrac{\sin^2\theta + \cos^2\theta}{\cos^2\theta} \\[5ex] \sin^2\theta + \cos^2\theta = 1 ...\text{Pythagorean Identity} \\[3ex] \implies \\[3ex] = \dfrac{1}{\cos^2\theta} \\[5ex] = RHS
(2.) (i.) Using the letters p, q or r, write an expression for EACH of the following trigonometric ratios.

Number 2

\sin \theta = \\[3ex] \cos \theta = \\[3ex] (ii.) Using your answers in (i.), determine the value of \sin^2\theta + \cos^2\theta
Recall that \sin^2\theta = (\sin\theta)^2

(iii.) Prove the identity \tan A + \dfrac{1}{\tan A} = \dfrac{1}{\sin A\cos A}


(i.) \\[3ex] hyp = q \\[3ex] \text{with respect to } \theta \\[3ex] adj = r \\[3ex] opp = p \\[5ex] \underline{SOHCAHTOA} \\[3ex] \sin\theta = \dfrac{opp}{hyp} = \dfrac{p}{q} \\[5ex] \cos\theta = \dfrac{adj}{hyp} = \dfrac{r}{q} \\[5ex] \underline{\text{Pythagorean Theorem}} \\[3ex] hyp^2 = opp^2 + adj^2 \\[4ex] q^2 = p^2 + r^2 \\[5ex] (ii.) \\[3ex] \sin^2\theta + \cos^2\theta \\[4ex] = \left(\dfrac{p}{q}\right)^2 + \left(\dfrac{r}{q}\right)^2 \\[6ex] = \dfrac{p^2}{q^2} + \dfrac{r^2}{q^2} \\[6ex] = \dfrac{p^2 + r^2}{q^2} \\[6ex] = \dfrac{q^2}{q^2} \\[6ex] = 1 \\[5ex] (iii.) \\[3ex] \text{From LHS} \\[3ex] \tan A + \dfrac{1}{\tan A} \\[5ex] = \dfrac{\sin A}{\cos A} + \dfrac{\cos A}{\sin A} \\[5ex] = \dfrac{\sin A(\sin A) + \cos A(\cos A)}{\sin A \cos A} \\[5ex] = \dfrac{\sin^2 A + \cos^2 A}{\sin A\cos A} \\[6ex] \sin^2 A + \cos^2 A = 1 ...\text{Pythagorean Identities} \\[4ex] = \dfrac{1}{\sin A\cos A} \\[5ex] = RHS
(3.) (a.) A wire in the form of a circle with radius 4 cm is reshaped in the form of a sector of a circle with radius 10 cm.
Determine, in radians, the angle of the sector, giving your answer in terms of π.

(b.) Solve the equation \sin^2\theta + 3\cos 2\theta = 2 for 0 ≤ θ ≤ π.
Give your answer(s) to 1 decimal place.

(c.) Prove the identity \dfrac{1}{1 - \sin x} - \dfrac{1}{1 + \sin x} \equiv \dfrac{2\tan x}{\cos x}


The circle is reshaped as a sector.
The area of the circle should be the same as the area of the sector.

(a.) \\[3ex] \underline{Circle} \\[3ex] radius = 4\;cm \\[3ex] Area = \pi * radius^2 \\[3ex] = \pi (4)^2 \\[3ex] = \pi * 4 * 4 \\[5ex] \underline{Sector\;\;with\;\;\theta\;\;in\;\;RAD} \\[3ex] radius = 10\;cm \\[3ex] Area = \dfrac{radius^2 * \theta}{2} \\[5ex] = \dfrac{(10)^2 * \theta}{2} \\[5ex] = \dfrac{10 * 10 * \theta}{2} \\[5ex] = 5 * 10 * \theta \\[3ex] \text{The two areas should be the same} \\[3ex] \implies \\[3ex] 5 * 10 * \theta = \pi * 4 * 4 \\[3ex] \theta = \dfrac{\pi * 4 * 4}{5 * 10} \\[5ex] \theta = \dfrac{8\pi}{25} \\[5ex] (b.) \\[3ex] \sin^2\theta + 3\cos 2\theta = 2 \\[3ex] But: \\[3ex] \cos 2\theta \\[3ex] = \cos(\theta + \theta) \\[3ex] = \cos\theta\cos\theta - \sin\theta\sin\theta ...\text{Difference Formula} \\[3ex] = \cos^2\theta - \sin^2\theta \\[3ex] \implies \\[3ex] \sin^2\theta + 3(\cos^2\theta - \sin^2\theta) = 2 \\[3ex] \sin^2\theta + 3\cos^2\theta - 3\sin^2\theta = 2 \\[3ex] But: \\[3ex] \sin^2\theta + \cos^2\theta = 1 ...\text{Pythagorean Identity} \\[3ex] \cos^2\theta = 1 - \sin^2\theta \\[3ex] \implies \\[3ex] \sin^2\theta + 3(1 - \sin^2\theta) - 3\sin^2\theta = 2 \\[3ex] \sin^2\theta + 3 - 3\sin^2\theta - 3\sin^2\theta = 2 \\[3ex] -5\sin^2\theta = 2 - 3 \\[3ex] -5\sin^2\theta = -1 \\[3ex] \sin^2\theta = \dfrac{-1}{-5} \\[5ex] \sin^2\theta = 0.2 \\[3ex] \sin\theta = \sqrt{0.2} \\[3ex] \sin\theta = 0.4472135955 ...\text{it is positive: 1st and 2nd Quadrants} \\[3ex] \theta = \sin^{-1}(0.4472135955) \\[3ex] \theta = 26.56505118 \\[3ex] \theta \approx 26.6^\circ ...\text{to one decimal place} \\[5ex] Also: \\[3ex] 180 - \theta \\[3ex] = 180 - 26.56505118 \\[3ex] = 153.4349488 \\[3ex] \approx 153.4^\circ \\[5ex] \therefore \theta = 26.6^\circ, 153.4^\circ \\[3ex] Check
\theta = 26.56505118^\circ, 153.4349488^\circ
LHS RHS
\sin^2\theta + 3\cos 2\theta \\[3ex] \theta = 26.56505118^\circ \\[3ex] \implies \\[3ex] \sin^2(26.56505118) + 3\cos 2(26.56505118) \\[3ex] = 0.2 + 3(0.5999999999) \\[3ex] = 0.2 + 1.8 \\[3ex] = 2
\theta = 153.4349488^\circ \\[3ex] \implies \\[3ex] \sin^2(153.4349488) + 3\cos 2(153.4349488) \\[3ex] = 0.2 + 3(0.5999999994) \\[3ex] = 0.2 + 1.8 \\[3ex] = 2
2


(c.) \\[3ex] \dfrac{1}{1 - \sin x} - \dfrac{1}{1 + \sin x} \equiv \dfrac{2\tan x}{\cos x} \\[5ex] From\;\;LHS \\[3ex] \dfrac{1}{1 - \sin x} - \dfrac{1}{1 + \sin x} \\[5ex] = \dfrac{(1 + \sin x) - (1 - \sin x)}{(1 - \sin x)(1 + \sin x)} \\[5ex] (1 - \sin x)(1 + \sin x) = 1^2 - \sin^2 x ...\text{Difference of Two Squares} \\[3ex] \implies \\[3ex] = \dfrac{1 + \sin x - 1 + \sin x}{1^2 - \sin^2 x} \\[5ex] = \dfrac{2\sin x}{1 - \sin^2 x} \\[5ex] \sin^2 x + \cos^2 x = 1 ...\text{Pythagorean Identity} \\[3ex] \cos^2 x = 1 - \sin^2 x \\[3ex] \implies \\[3ex] = \dfrac{2\sin x}{\cos^2 x} \\[5ex] = \dfrac{2\sin x}{\cos x * \cos x} \\[5ex] = \dfrac{2\sin x}{\cos x} * \dfrac{1}{\cos x} \\[5ex] \dfrac{\sin x}{\cos x} = \tan x ...\text{Quotient Identity} \\[5ex] \implies \\[3ex] = \dfrac{2\tan x}{\cos x} \\[5ex] = RHS
(4.) (a.) The following diagram (not drawn to scale) shows two sectors, AOB and DOC.
OB and OC are x cm and (x + 2) cm respectively and angle AOB = θ

Number 4

If \theta = \dfrac{2\pi}{9} radians, calculate the area of the shaded region in terms of x.

(b.) Given that \cos 30^\circ = \dfrac{\sqrt{3}}{2} and \sin 45^\circ = \dfrac{\sqrt{2}}{2}, without the use of a calculator, evaluate \cos 105^\circ, in surd form, giving your answer in the simplest terms.

(c.) Prove that the identity \dfrac{\sin(\theta + \alpha)}{\cos\theta\cos\alpha} \equiv \tan\theta + \tan\alpha


Area of the shaded region = Area of sector DOC − Area of sector AOB

\underline{\text{Sector DOC}} \\[3ex] radius = x + 2 \\[3ex] central\;\;angle = \theta = \dfrac{2\pi}{9}\;radians \\[5ex] Area = \dfrac{radius^2 * \theta}{2} \\[5ex] = \theta * radius^2 * \dfrac{1}{2} \\[5ex] = \dfrac{2\pi}{9} * (x + 2)^2 * \dfrac{1}{2} \\[5ex] = \dfrac{\pi[(x + 2)(x + 2)]}{9} \\[5ex] = \dfrac{\pi(x^2 + 2x + 2x + 4)}{9} \\[5ex] = \dfrac{\pi(x^2 + 4x + 4)}{9} \\[5ex] = \dfrac{\pi x^2 + 4\pi x + 4\pi}{9}\;cm^2 \\[7ex] \underline{\text{Sector AOB}} \\[3ex] radius = x \\[3ex] central\;\;angle = \theta = \dfrac{2\pi}{9}\;radians \\[5ex] Area = \dfrac{radius^2 * \theta}{2} \\[5ex] = \theta * radius^2 * \dfrac{1}{2} \\[5ex] = \dfrac{2\pi}{9} * x^2 * \dfrac{1}{2} \\[5ex] = \dfrac{\pi x^2}{9}\;cm^2 \\[7ex] \underline{\text{Shaded Region}} \\[3ex] Area = \dfrac{\pi x^2 + 4\pi x + 4\pi}{9} - \dfrac{\pi x^2}{9} \\[5ex] = \dfrac{\pi x^2 + 4\pi x + 4\pi - \pi x^2}{9} \\[5ex] = \dfrac{4\pi(x + 1)}{9}\;cm^2 \\[5ex] (b.) We need to find some of the trigonometric ratios of these angles
Remember we were only given some trigonometric ratios of angles 30° and 45°, and expected to find a trigonometric ratio of 105°

105° = 60° + 45°
60° = 30° + 30°

\cos 30^\circ = \dfrac{\sqrt{3}}{2} \\[5ex] \sin 45^\circ = \dfrac{\sqrt{2}}{2} \\[7ex] \underline{30^\circ} \\[3ex] \cos 30^\circ = \dfrac{\sqrt{3}}{2} = \dfrac{adj}{hyp} ...SOHCAHTOA \\[5ex] adj = \sqrt{3} \\[3ex] hyp = 2 \\[3ex] opp^2 + adj^2 = hyp^2 ...\text{Pythagorean Theorem} \\[3ex] opp^2 = hyp^2 - adj^2 \\[3ex] opp^2 = 2^2 - (\sqrt{3})^2 \\[3ex] opp^2 = 4 - 3 \\[3ex] opp^2 = 1 \\[3ex] opp = \sqrt{1} \\[3ex] opp = 1 \\[3ex] \sin 30^\circ = \dfrac{opp}{hyp} = \dfrac{1}{2} ...SOHCAHTOA \\[7ex] \underline{45^\circ} \\[3ex] \sin 45^\circ = \dfrac{\sqrt{2}}{2} = \dfrac{opp}{hyp} ...SOHCAHTOA \\[5ex] opp = \sqrt{2} \\[3ex] hyp = 2 \\[3ex] opp^2 + adj^2 = hyp^2 ...\text{Pythagorean Theorem} \\[3ex] adj^2 = hyp^2 - opp^2 \\[3ex] adj^2 = 2^2 - (\sqrt{2})^2 \\[3ex] adj^2 = 4 - 2 \\[3ex] adj^2 = 2 \\[3ex] adj = \sqrt{2} \\[3ex] \cos 45^\circ = \dfrac{adj}{hyp} = \dfrac{\sqrt{2}}{2} ...SOHCAHTOA \\[7ex] \underline{60^\circ} \\[3ex] \cos 60^\circ = \cos(30^\circ + 30^\circ) ...\text{Sum Formula} \\[3ex] = \cos 30\cos 30 - \sin 30\sin 30 \\[3ex] = \dfrac{\sqrt{3}}{2} * \dfrac{\sqrt{3}}{2} - \dfrac{1}{2} * \dfrac{1}{2} \\[5ex] = \dfrac{3}{4} - \dfrac{1}{4} \\[5ex] = \dfrac{3 - 1}{4} \\[5ex] = \dfrac{2}{4} \\[5ex] = \dfrac{1}{2} \\[7ex] \sin 60^\circ = \sin(30^\circ + 30^\circ) ...\text{Sum Formula} \\[3ex] = \sin 30\cos 30 + \cos 30\sin 30 \\[3ex] = \sin 30\cos 30 - \sin 30\cos 30 \\[3ex] = 2\sin 30\cos 30 \\[3ex] = 2 * \dfrac{1}{2} * \dfrac{\sqrt{3}}{2} \\[5ex] = \dfrac{\sqrt{3}}{2} \\[7ex] \underline{105^\circ} \\[3ex] \cos 105^\circ = \cos(60^\circ + 45^\circ) ...\text{Sum Formula} \\[3ex] = \cos 60\cos 45 - \sin 60\sin 45 \\[3ex] = \dfrac{1}{2} * \dfrac{\sqrt{2}}{2} - \dfrac{\sqrt{3}}{2} * \dfrac{\sqrt{2}}{2} \\[5ex] = \dfrac{\sqrt{2}}{4} - \dfrac{\sqrt{6}}{4} \\[3ex] = \dfrac{\sqrt{2} - \sqrt{6}}{4} \\[7ex] (c.) \\[3ex] \dfrac{\sin(\theta + \alpha)}{\cos\theta\cos\alpha} \equiv \tan\theta + \tan\alpha \\[5ex] From\;\;LHS \\[3ex] \dfrac{\sin(\theta + \alpha)}{\cos\theta\cos\alpha} \\[5ex] But: \\[3ex] \sin(\theta + \alpha) = \sin\theta\cos\alpha + \cos\theta\sin\alpha ...\text{Sum Formula} \\[3ex] \implies \\[3ex] = \dfrac{\sin\theta\cos\alpha + \cos\theta\sin\alpha}{\cos\theta\cos\alpha} \\[5ex] = \dfrac{\sin\theta\cos\alpha}{\cos\theta\cos\alpha} + \dfrac{\cos\theta\sin\alpha}{\cos\theta\cos\alpha} \\[5ex] = \dfrac{\sin\theta}{\cos\theta} + \dfrac{\sin\alpha}{\cos\alpha} \\[5ex] = \tan\theta + \tan\alpha \\[3ex] = RHS
(5.) (a.) Figure 1 shows a plot of land, ABCD (not drawn to scale).
Section ABC is used for building and the remainder for farming.
The radius BC is 10 m and angle BCD is a right angle.

Number 5

(i.) If the building space is \dfrac{50\pi}{3}\;m^2, calculate the angle ACB in radians.
(ii.) Working in radians, calculate the area used for farming.

(b.) Given that

\sin\dfrac{\pi}{3} = \dfrac{\sqrt{3}}{2}, \\[5ex] \cos\dfrac{\pi}{3} = \dfrac{1}{2} \;\;and \\[5ex] \sin\dfrac{\pi}{4} = \cos\dfrac{\pi}{4} = \dfrac{\sqrt{2}}{2}, \\[5ex] show without using a calculator that

\dfrac{\cos\left[\dfrac{\pi}{4} - \dfrac{\pi}{3}\right]}{\sin\dfrac{2\pi}{3}} = \dfrac{\sqrt{2} + \sqrt{6}}{2\sqrt{3}} \\[7ex] (c.) Prove the identity

1 - \dfrac{\cos^2\theta}{1 + \sin\theta} = \sin\theta \\[5ex]

It is necessary to note that:
Section ABC is a sector of a circle.
This is the building space.

Section ADC is a right triangle.
This is the farming space.

The radius of the sector ABC is the hypotenuse of the right triangle ADC ...diagram

(a.)(i.) \\[3ex] \underline{\text{Section ABC: Building Space}} \\[3ex] Area = \dfrac{50\pi}{3}\;m^2 \\[5ex] radius = |BC| = |AC| = 10\;m \\[3ex] \theta = 2 * Area * \dfrac{1}{radius^2}...\text{Angle in Radians} \\[5ex] \theta = 2 * \dfrac{50\pi}{3} * \dfrac{1}{10^2} \\[5ex] \theta = \dfrac{2 * 50 * \pi}{3 * 10 * 10} \\[5ex] \theta = \dfrac{\pi}{3}\;RAD \\[5ex] \angle ACB = \theta = \dfrac{\pi}{3}\;RAD...diagram \\[5ex] (ii.) \\[3ex] \angle BCD = 90^\circ ...\text{right angle in DEG} \\[3ex] \angle BCD = \dfrac{\pi}{2}\;RAD ...\text{right angle in RAD} \\[5ex] \angle ACD + \angle ACB = \angle BCD ...diagram \\[3ex] \angle ACD = \angle BCD - \angle ACB \\[3ex] \angle ACD = \dfrac{\pi}{2} - \dfrac{\pi}{3} \\[5ex] \angle ACD = \dfrac{3\pi - 2\pi}{6} \\[5ex] \angle ACD = \dfrac{\pi}{6} \\[5ex] \underline{\text{Section ADC: Farming Space}} \\[3ex] hyp = |AC| = 10\;m \\[3ex] \sin\angle ACD = \dfrac{opp}{hyp} = \dfrac{|AD|}{|AC|} ...SOHCAHTOA \\[5ex] \sin\dfrac{\pi}{6} = \dfrac{|AD|}{10} \\[5ex] |AD| = 10 * \sin\dfrac{\pi}{6} \\[5ex] |AD| = 10 * \dfrac{1}{2} \\[3ex] |AD| = 5\;cm \\[5ex] \cos\angle ACD = \dfrac{adj}{hyp} = \dfrac{|DC|}{|AC|} ...SOHCAHTOA \\[5ex] \cos\dfrac{\pi}{6} = \dfrac{|DC|}{10} \\[5ex] |DC| = 10 * \cos\dfrac{\pi}{6} \\[5ex] |DC| = 10 * \dfrac{\sqrt{3}}{2} \\[5ex] |DC| = 5\sqrt{3}\;cm \\[5ex] Area = \dfrac{base * \perp height}{2} \\[5ex] Area = \dfrac{|DC| * |AD|}{2} \\[5ex] Area = \dfrac{5\sqrt{3} * 5}{2} \\[5ex] Area = \dfrac{25\sqrt{3}}{2}\;m^2 \\[5ex] For the (b.) part, we shall use the Sum and Difference Formulas

(b.) \\[3ex] \sin\dfrac{\pi}{3} = \dfrac{\sqrt{3}}{2}, \\[5ex] \cos\dfrac{\pi}{3} = \dfrac{1}{2} \;\;and \\[5ex] \sin\dfrac{\pi}{4} = \cos\dfrac{\pi}{4} = \dfrac{\sqrt{2}}{2}, \\[7ex] \cos\left(\dfrac{\pi}{4} - \dfrac{\pi}{3}\right) ...\text{Difference Formula} \\[5ex] = \cos\dfrac{\pi}{4}\cos\dfrac{\pi}{3} + \sin\dfrac{\pi}{4}\sin\dfrac{\pi}{3} \\[5ex] = \dfrac{\sqrt{2}}{2} * \dfrac{1}{2} + \dfrac{\sqrt{2}}{2} * \dfrac{\sqrt{3}}{2} \\[5ex] = \dfrac{\sqrt{2}}{4} + \dfrac{\sqrt{6}}{4} \\[5ex] = \dfrac{\sqrt{2} + \sqrt{6}}{4} \\[7ex] \sin\dfrac{2\pi}{3} \\[5ex] = \sin\left(\dfrac{\pi}{3} + \dfrac{\pi}{3}\right) ...\text{Sum Formula} \\[5ex] = \sin\dfrac{\pi}{3}\cos\dfrac{\pi}{3} + \cos\dfrac{\pi}{3}\sin\dfrac{\pi}{3} \\[5ex] = \dfrac{\sqrt{3}}{2} * \dfrac{1}{2} + \dfrac{1}{2} * \dfrac{\sqrt{3}}{2} \\[5ex] = \dfrac{\sqrt{3}}{4} + \dfrac{\sqrt{3}}{4} \\[5ex] = \dfrac{2\sqrt{3}}{4} \\[5ex] = \dfrac{\sqrt{3}}{2} \\[5ex] \implies \\[3ex] \dfrac{\sqrt{2} + \sqrt{6}}{4} \div \dfrac{\sqrt{3}}{2} \\[5ex] = \dfrac{\sqrt{2} + \sqrt{6}}{4} * \dfrac{2}{\sqrt{3}} \\[5ex] = \dfrac{\sqrt{2} + \sqrt{6}}{2\sqrt{3}} \\[5ex] For the (c.) part, we shall use the Pythagorean Identity to prove the trigonometric identity

(c.) \\[3ex] 1 - \dfrac{\cos^2\theta}{1 + \sin\theta} = \sin\theta \\[5ex] From\;\;LHS \\[3ex] 1 - \dfrac{\cos^2\theta}{1 + \sin\theta} \\[5ex] = \dfrac{1 + \sin\theta}{1 + \sin\theta} - \dfrac{\cos^2\theta}{1 + \sin\theta} \\[5ex] = \dfrac{1 + \sin\theta - \cos^2\theta}{1 + \sin\theta} \\[5ex] But\;\;\sin^2\theta + \cos^2\theta = 1 ...\text{Pythagorean Identity} \\[3ex] \cos^2\theta = 1 - \sin^2\theta \\[3ex] \implies \\[3ex] = \dfrac{1 + \sin\theta - (1 - \sin\theta)}{1 + \sin\theta} \\[5ex] = \dfrac{1 + \sin\theta - 1 + \sin^2\theta}{1 + \sin\theta} \\[5ex] = \dfrac{\sin^2\theta + \sin\theta}{\sin\theta + 1} \\[5ex] = \dfrac{\sin\theta(\sin\theta + 1)}{\sin\theta + 1} \\[5ex] = \sin\theta \\[3ex] = RHS
(6.)


(7.) (a.) The following diagram shows a circle of radius r = 4cm, with centre O and sector AOB which subtends an angle, \theta = \dfrac{\pi}{6} radians at the centre.

Number 7

If the area of the triangle AOB is \dfrac{1}{2}r^2\sin\theta, then calculate the area of the shaded region.

(b.) Solve the following equation, giving your answer correct to one decimal place.

8\sin^2\theta = 5 - 10\cos\theta, \;\;\;where\;\;\; 0^\circ \le \theta \le 360^\circ \\[3ex] (c.) Prove the identity

\dfrac{\sin\theta + \sin 2\theta}{1 + \cos\theta + \cos 2\theta} \equiv \tan\theta \\[5ex]

Angle, θ is in radians
The area of the shaded region is the difference between the area of sector AOB and the area of triangle AOB

(a.) \\[3ex] \underline{\text{Sector AOB}} \\[3ex] A_S = \dfrac{r^2\theta}{360} \\[5ex] = r^2 * \theta * \dfrac{1}{360} \\[5ex] = 4^2 * \dfrac{\pi}{6} * \dfrac{1}{360} \\[5ex] = \dfrac{\pi}{135}cm^2 \\[5ex] \underline{\text{Triangle AOB}} \\[3ex] A_T = \dfrac{1}{2}r^2\sin\theta \\[5ex] = \dfrac{1}{2} * 4^2 * \sin\left(\dfrac{\pi}{6}\right) \\[5ex] = \dfrac{1}{2} * 16 * \dfrac{1}{2} \\[5ex] = 4\;cm^2 \\[5ex] \underline{\text{Shaded Region}} \\[3ex] Area = A_S - A_T \\[3ex] = \dfrac{\pi}{135} - 4 \\[5ex] = \dfrac{\pi}{135} - \dfrac{540}{135} \\[5ex] = \dfrac{\pi - 540}{135}\;cm^2 \\[5ex] (b.) \\[3ex] 8\sin^2\theta = 5 - 10\cos\theta \\[3ex] Domain = [0^\circ, 360^\circ] \\[3ex] But:\;\;\sin^2\theta + \cos^2\theta = 1 ...\text{Pythagorean Identity} \\[3ex] \sin^2\theta = 1 - \cos^2\theta \\[3ex] \implies \\[3ex] 8(1 - \cos^2\theta) = 5 - 10\cos\theta \\[3ex] 8 - 8\cos^2\theta = 5 - 10\cos\theta \\[3ex] 5 - 10\cos\theta = 8 - 8\cos^2\theta \\[3ex] 5 - 10\cos\theta - 8 + 8\cos^2\theta = 0 \\[3ex] 8\cos^2\theta - 10\cos\theta - 3 = 0 \\[3ex] Let\;\;\cos\theta = p \\[3ex] \implies \\[3ex] 8p^2 - 10p - 3 = 0 \\[3ex] 8p^2 + 2p - 12p - 3 = 0 \\[3ex] 2p(4p + 1) - 3(4p + 1) = 0 \\[3ex] (4p + 1)(2p - 3) = 0 \\[3ex] 4p + 1 = 0 \;\;\;OR\;\;\; 2p - 3 = 0 \\[3ex] 4p = -1 \;\;\;OR\;\;\; 2p = 3 \\[3ex] p = -\dfrac{1}{4} \;\;\;OR\;\;\; p = \dfrac{3}{2} \\[5ex] \text{Let's get back to finding } \theta \\[3ex] cos\theta = p \hspace{3em} When\;\;p = -\dfrac{1}{4} \\[5ex] \cos\theta = -\dfrac{1}{4} \\[5ex] \text{The cosine is negative in the 2nd and 3rd quadrants} \\[3ex] \cos^{-1}\left(\dfrac{1}{4}\right) = 75.52248781^\circ \\[3ex] \theta = 180 - 75.52248781 ...\text{2nd Quadrant Identity} \\[3ex] \theta = 104.4775122^\circ \\[5ex] Also: \\[3ex] \theta = 180 + 75.52248781 ...\text{3rd Quadrant Identity} \\[3ex] \theta = 255.5224878^\circ \\[5ex] cos\theta = p \hspace{3em} When\;\;p = \dfrac{3}{2} \\[5ex] \cos\theta = \dfrac{3}{2} \\[5ex] \text{This is not feasible because the trigonometric functions of real angles lie between } -1 \;\;and\;\; 1 \\[3ex] \therefore \theta \approx 104.5^\circ, 255.5^\circ ...\text{to 1 decimal place} \\[3ex] Check
\theta = 104.4775122^\circ, 255.5224878^\circ
LHS RHS
8\sin^2\theta \\[3ex] For\;\;\theta = 104.4775122^\circ \\[3ex] 8 * \sin^2(104.4775122) \\[3ex] 8 * (\sin 104.4775122)^2 \\[3ex] 8(0.9682458366)^2 \\[3ex] 8(0.9375) \\[3ex] 7.5
For\;\;\theta = 255.5224878^\circ \\[3ex] 8 * \sin^2(255.5224878) \\[3ex] 8 * (\sin 255.5224878)^2 \\[3ex] 8(-0.9682458366)^2 \\[3ex] 8(0.9375) \\[3ex] 7.5
5 - 10\cos\theta \\[3ex] For\;\;\theta = 104.4775122^\circ \\[3ex] 5 - 10\cos(104.4775122) \\[3ex] 5 - 10(-0.25) \\[3ex] 5 + 2.5 \\[3ex] 7.5
For\;\;\theta = 255.5224878^\circ \\[3ex] 5 - 10\cos(255.5224878) \\[3ex] 5 - 10(-0.25) \\[3ex] 5 + 2.5 \\[3ex] 7.5

(c.) \\[3ex] \dfrac{\sin\theta + \sin 2\theta}{1 + \cos\theta + \cos 2\theta} \equiv \tan\theta \\[5ex] \text{Let us find the expressions for the double-angles.} \\[3ex] \sin 2\theta = \sin(\theta + \theta) ...\text{Sum Formula to Double-Angle Formula} \\[3ex] = \sin\theta\cos\theta + \cos\theta\sin\theta \\[3ex] = \sin\theta\cos\theta + \sin\theta\cos\theta \\[3ex] = 2\sin\theta\cos\theta \\[5ex] \cos 2\theta = \cos(\theta + \theta) ...\text{Sum Formula to Double-Angle Formula} \\[3ex] = \cos\theta\cos\theta - \sin\theta\sin\theta \\[3ex] = \cos^2\theta - \sin^2\theta \\[3ex] But:\;\;\sin^2\theta + \cos^2\theta = 1 ...\text{Pythagorean Identity} \\[3ex] \sin^2\theta = 1 - \cos^2\theta \\[3ex] \implies \\[3ex] = \cos^2\theta - (1 - \cos^2\theta) \\[3ex] = \cos^2\theta - 1 + \cos^2\theta \\[3ex] = 2\cos^2\theta - 1 \\[5ex] From\;\;LHS \\[3ex] \dfrac{\sin\theta + \sin 2\theta}{1 + \cos\theta + \cos 2\theta} \\[5ex] = \dfrac{\sin\theta + 2\sin\theta\cos\theta}{1 + \cos\theta + (2\cos^2\theta - 1)} \\[5ex] = \dfrac{\sin\theta + 2\sin\theta\cos\theta}{1 + \cos\theta + 2\cos^2\theta - 1} \\[5ex] = \dfrac{\sin\theta(1 + 2\cos\theta)}{\cos\theta + 2\cos^2\theta} \\[5ex] = \dfrac{\sin\theta(1 + 2\cos\theta)}{\cos\theta(1 + 2\cos\theta)} \\[5ex] = \dfrac{\sin\theta}{\cos\theta} \\[5ex] = \tan\theta ...\text{Quotient Identity} \\[3ex] = RHS
(8.)


(9.)

(10.)


(11.)


(12.)


(13.)


(14.)


(15.)

(16.)


(17.)


(18.)


(19.)

(20.)






Top




(21.)


(22.)


(23.)


(24.)


(25.)


(26.)


(27.)


(28.)


(29.)


(30.)


(31.)


(32.)


(33.)


(34.)


(35.)


(36.)


(37.)


(38.)


(39.)


(40.)






Top




(41.)


(42.)


(43.)


(44.)


(45.)


(46.)


(47.)


(48.)


(49.)


(50.)


(51.)


(52.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.