These are the solutions to the CSEC past questions on the topics: Linear Algebra.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided
for some questions.
The link to the video solutions will be provided for you. Please
subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during
the video livestreams.
If you find these resources valuable and helpful in your passing the
Mathematics test of the ACT, please consider making a donation:
Google charges me for the hosting of this website and my other
educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well.
As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.
Comments, ideas, areas of improvement, questions, and constructive
criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.
Linear Transformation to Matrix
For a linear transformation $T:(x, y) \rightarrow (ax + by, cx + dy)$,
the corresponding matrix is:
$
T = \begin{bmatrix}
a & b \\[3ex]
c & d
\end{bmatrix}
$
2 by 2 Matrix
Let:
$
A = \begin{bmatrix}
a_{11} & a_{12} \\[3ex]
a_{21} & a_{22}
\end{bmatrix} = \begin{bmatrix}
\color{red}{a} & \color{darkblue}{b} \\[3ex]
\color{darkblue}{c} & \color{red}{d}
\end{bmatrix} \\[10ex]
(1.)\;\; minor\:\: A = \begin{bmatrix}
d & c \\[3ex]
b & a
\end{bmatrix} \\[10ex]
\text{The signs to remember cofactors when determining the determinant of a matrix is}: \\[3ex]
\begin{vmatrix}
+ & - \\[3ex]
- & +
\end{vmatrix} \\[10ex]
(2.)\;\; cofactor\:\: A = \begin{bmatrix}
d & -c \\[3ex]
-b & a
\end{bmatrix} \\[10ex]
(3.)\;\; adj\:\: A = \begin{bmatrix}
d & -b \\[3ex]
-c & a
\end{bmatrix} \\[10ex]
(4.)\;\; det\;A = ad - cb \\[3ex]
(5.)\;\; A^{-1} = \dfrac{adj\;A}{det\;A}
$
3 by 3 Matrix
Let:
$
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\[3ex]
a_{21} & a_{22} & a_{23} \\[3ex]
a_{31} & a_{32} & a_{33}
\end{bmatrix} =
\begin{bmatrix}
a & b & c \\[3ex]
d & e & f \\[3ex]
g & h & i
\end{bmatrix} \\[15ex]
(1.)\;\; minor\:\: A = \begin{bmatrix}
ei - hf & di - gf & dh - ge \\[3ex]
bi - hc & ai - gc & ah - gb \\[3ex]
bf - ec & af - dc & ae - db
\end{bmatrix} \\[15ex]
\text{The signs to remember cofactors when determining the determinant of a matrix is}: \\[3ex]
\begin{vmatrix}
+ & - & + \\[3ex]
- & + & - \\[3ex]
+ & - & +
\end{vmatrix} \\[10ex]
(2.)\;\; cofactor\:\: A = \begin{bmatrix}
ei - hf & gf - di & dh - ge \\[3ex]
hc - bi & ai - gc & gb - ah \\[3ex]
bf - ec & dc - af & ae - db
\end{bmatrix} \\[15ex]
(3.)\;\; adj\: A = \begin{bmatrix}
ei - hf & hc - bi & bf - ec \\[3ex]
gf - di & ai - gc & dc - af \\[3ex]
dh - ge & gb - ah & ae - db
\end{bmatrix} \\[15ex]
(4.)\;\; det\: A = aei + bgf + cdh - ahf - bdi - cge \\[3ex]
(5.)\;\; A^{-1} = \dfrac{adj\;A}{det\;A}
$
Formula Sheet: List of Formulae
(1.) Determine the values of the unknowns in EACH of the matrix equations below.
(7.) (a.) The matrices P, Q and R are given below, in terms of the scalar constants a, b
and c, as
$
P = \begin{bmatrix}
3 & -9 \\[2ex]
a & 7
\end{bmatrix}, \hspace{2em}
Q = \begin{bmatrix}
-1 & b \\[2ex]
-4 & 1
\end{bmatrix}, \hspace{2em}
R = \begin{bmatrix}
c & -3 \\[2ex]
-4 & 8
\end{bmatrix}
$
Given that P + Q = R, find the value a, b and c
(b.) Solve the following pair of simultaneous equations using a matrix method.
$
5x - 2y = 44 \\[3ex]
2x + 3y = 10 \\[3ex]
$
$
(a.) \\[3ex]
3 + (-1) = c \\[3ex]
c = 3 - 1 \\[3ex]
c = 2 \\[5ex]
-9 + b = -3 \\[3ex]
b = -3 + 9 \\[3ex]
b = 6 \\[5ex]
a + (-4) = -4 \\[3ex]
a - 4 = -4 \\[3ex]
a = -4 + 4 \\[3ex]
a = 0 \\[3ex]
$
(b.) Using a matrix method probably means using any of these methods:
Method of Determinants (also known as Cramer's Rule)
Row Reduction Method (also known as the Guass-Jordan Method or the Guassian Elimination Method)
Matrix Inverse Method
We shall solve the simultaneous equation using those three methods/approaches.
Then, we shall check our solution.
Use any method required by your teacher.