Please Read Me.

Linear Algebra

Welcome to Our Site


I greet you this day,

These are the solutions to the CSEC past questions on the topics: Linear Algebra.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and helpful in your passing the Mathematics test of the ACT, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

2 by 2 Matrix

Let:

$ A = \begin{bmatrix} a_{11} & a_{12} \\[3ex] a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \color{red}{a} & \color{darkblue}{b} \\[3ex] \color{darkblue}{c} & \color{red}{d} \end{bmatrix} \\[10ex] (1.)\;\; minor\:\: A = \begin{bmatrix} d & c \\[3ex] b & a \end{bmatrix} \\[10ex] \text{The signs to remember cofactors when determining the determinant of a matrix is}: \\[3ex] \begin{vmatrix} + & - \\[3ex] - & + \end{vmatrix} \\[10ex] (2.)\;\; cofactor\:\: A = \begin{bmatrix} d & -c \\[3ex] -b & a \end{bmatrix} \\[10ex] (3.)\;\; adj\:\: A = \begin{bmatrix} d & -b \\[3ex] -c & a \end{bmatrix} \\[10ex] (4.)\;\; det\;A = ad - cb $



3 by 3 Matrix

Let:

$ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\[3ex] a_{21} & a_{22} & a_{23} \\[3ex] a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a & b & c \\[3ex] d & e & f \\[3ex] g & h & i \end{bmatrix} \\[15ex] (1.)\;\; minor\:\: A = \begin{bmatrix} ei - hf & di - gf & dh - ge \\[3ex] bi - hc & ai - gc & ah - gb \\[3ex] bf - ec & af - dc & ae - db \end{bmatrix} \\[15ex] \text{The signs to remember cofactors when determining the determinant of a matrix is}: \\[3ex] \begin{vmatrix} + & - & + \\[3ex] - & + & - \\[3ex] + & - & + \end{vmatrix} \\[10ex] (2.)\;\; cofactor\:\: A = \begin{bmatrix} ei - hf & gf - di & dh - ge \\[3ex] hc - bi & ai - gc & gb - ah \\[3ex] bf - ec & dc - af & ae - db \end{bmatrix} \\[15ex] (3.)\;\; adj\: A = \begin{bmatrix} ei - hf & hc - bi & bf - ec \\[3ex] gf - di & ai - gc & dc - af \\[3ex] dh - ge & gb - ah & ae - db \end{bmatrix} \\[15ex] (4.)\;\; det\: A = aei + bgf + cdh - ahf - bdi - cge $

Formula Sheet: List of Formulae
(1.) Determine the values of the unknowns in EACH of the matrix equations below.

$ (i.) \begin{bmatrix} 4 & 0 \\[2ex] -2 & 5 \end{bmatrix} + \begin{bmatrix} x & 2 \\[2ex] 8 & -1 \end{bmatrix} = \begin{bmatrix} -3 & 2 \\[2ex] y & 4 \end{bmatrix} \\[10ex] (ii.) \begin{bmatrix} 5 & -3 \\[2ex] 2 & 3 \end{bmatrix} \begin{bmatrix} a & 2 \\[2ex] c & -1 \end{bmatrix} = \begin{bmatrix} -10 & 13 \\[2ex] 17 & 1 \end{bmatrix} $


$ (i.) \\[3ex] 4 + x = -3 \\[3ex] x = -3 - 4 \\[3ex] x = -7 \\[5ex] -2 + 8 = y \\[3ex] y = 6 \\[5ex] (ii.) \\[3ex] \begin{bmatrix} 5 & -3 \\[2ex] 2 & 3 \end{bmatrix} \begin{bmatrix} a & 2 \\[2ex] c & -1 \end{bmatrix} \\[7ex] \begin{bmatrix} 5a + -3c & 5(2) + (-3)(-1) \\[2ex] 2a + 3c & 2(2) + 3(-1) \end{bmatrix} \\[7ex] \begin{bmatrix} 5a - 3c & 10 + 3 \\[2ex] 2a + 3c & 4 - 3 \end{bmatrix} \\[7ex] \begin{bmatrix} 5a - 3c & 13 \\[2ex] 2a + 3c & 1 \end{bmatrix} \\[7ex] So: \\[3ex] \begin{bmatrix} 5a - 3c & 13 \\[2ex] 2a + 3c & 1 \end{bmatrix} = \begin{bmatrix} -10 & 13 \\[2ex] 17 & 1 \end{bmatrix} \\[5ex] $ This implies that:

$ 5a - 3c = -10...eqn.(1) \\[3ex] 2a + 3c = 17 ...eqn.(2) \\[3ex] eqn.(1) + eqn.(2) \implies \\[3ex] 7a = 7 \\[3ex] a = \dfrac{7}{7} \\[5ex] a = 1 \\[5ex] \text{Substitute a = 1 in eqn.(2)} \\[3ex] 2(1) + 3c = 17 \\[3ex] 2 + 3c = 17 \\[3ex] 3c = 17 - 2 \\[3ex] 3c = 15 \\[3ex] c = \dfrac{15}{3} \\[5ex] c = 5 $

Calculator1-1st

Calculator1-2nd

Calculator1-3rd
(2.) The determinant of the matrix $\begin{bmatrix} 6 & 2v \\[2ex] -5 & -v \end{bmatrix}$ is 24.
Calculate the value of v


$ -6v - (-10v) = 24 \\[3ex] -6v + 10v = 24 \\[3ex] 4v = 24 \\[3ex] v = \dfrac{24}{4} \\[5ex] v = 6 $

$ \begin{bmatrix} 6 & 2v \\[2ex] -5 & -v \end{bmatrix} = \begin{bmatrix} 6 & 2(6) \\[2ex] -5 & -6 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\[2ex] -5 & -6 \end{bmatrix} $

Calculator2-1st

Calculator2-2nd
(3.) The matrices L and M are defined as follows.

$ L = \begin{bmatrix} 9 & 5 \\[2ex] 3 & 2 \end{bmatrix}, \hspace{3em} M = \begin{bmatrix} 2 \\[2ex] -4 \end{bmatrix} $

Evaluate EACH of the following.
(i.) The matrix product LM

(ii.) $L^{-1}$, the inverse of L


$ (i.) \\[3ex] LM \\[3ex] = \begin{bmatrix} 9 & 5 \\[2ex] 3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\[2ex] -4 \end{bmatrix} \\[8ex] = \begin{bmatrix} 9(2) + 5(-4) \\[2ex] 3(2) + 2(-4) \end{bmatrix} \\[8ex] = \begin{bmatrix} 18 -20 \\[2ex] 6 - 8 \end{bmatrix} \\[8ex] = \begin{bmatrix} -2 \\[2ex] -2 \end{bmatrix} \\[5ex] $ We have at least two approaches of determining the inverse of a matrix.
Use any approach you prefer (or required by your teacher).

$ (ii.) \\[3ex] \underline{\text{1st Approach: By Formula}} \\[3ex] L = \begin{bmatrix} 9 & 5 \\[2ex] 3 & 2 \end{bmatrix} \\[8ex] adj\;L = \begin{bmatrix} 2 & -5 \\[2ex] -3 & 9 \end{bmatrix} \\[8ex] det\;L = \begin{vmatrix} 9 & 5 \\[3ex] 3 & 2 \end{vmatrix} \\[8ex] = 9(2) - 3(5) \\[3ex] = 18 - 15 \\[3ex] = 3 \\[5ex] L^{-1} = \dfrac{adj\;L}{det\;L} \\[5ex] = \dfrac{\begin{bmatrix} 2 & -5 \\[2ex] -3 & 9 \end{bmatrix}}{3} \\[7ex] = \begin{bmatrix} \dfrac{2}{3} & -\dfrac{5}{3} \\[5ex] -\dfrac{3}{3} & \dfrac{9}{3} \end{bmatrix} \\[12ex] = \begin{bmatrix} \dfrac{2}{3} & -\dfrac{5}{3} \\[5ex] -1 & 3 \end{bmatrix} $

$ \underline{\text{2nd Approach: Row Reduction Method}} \\[3ex] L \ \ | \ \ I = I \ \ | \ \ L^{-1} \\[3ex] \left[ \begin{array}{cc|cc} 9 & 5 & 1 & 0 \\[3ex] 3 & 2 & 0 & 1 \end{array} \right] \underrightarrow{-R_1 + 3R_2} \left[ \begin{array}{cc|cc} 9 & 5 & 1 & 0 \\[3ex] 0 & 1 & -1 & 3 \end{array} \right] \\[10ex] \underrightarrow{-5R_2 + R_1} \left[ \begin{array}{cc|cc} 9 & 0 & 6 & -15 \\[3ex] 0 & 1 & -1 & 3 \end{array} \right] \\[10ex] \underrightarrow{R_1 \div 9} \left[ \begin{array}{cc|cc} 1 & 0 & \dfrac{6}{9} & -\dfrac{15}{9} \\[5ex] 0 & 1 & -1 & 3 \end{array} \right] \\[10ex] \implies \\[3ex] L^{-1} = \begin{bmatrix} \dfrac{6}{9} & -\dfrac{15}{9} \\[5ex] -1 & 3 \end{bmatrix} = \begin{bmatrix} \dfrac{2}{3} & -\dfrac{5}{3} \\[5ex] -1 & 3 \end{bmatrix} $

Calculator3-1st

Calculator3-2nd
(4.)

(5.)

(6.)


(7.) (a.) The matrices P, Q and R are given below, in terms of the scalar constants a, b and c, as

$ P = \begin{bmatrix} 3 & -9 \\[2ex] a & 7 \end{bmatrix}, \hspace{2em} Q = \begin{bmatrix} -1 & b \\[2ex] -4 & 1 \end{bmatrix}, \hspace{2em} R = \begin{bmatrix} c & -3 \\[2ex] -4 & 8 \end{bmatrix} $

Given that P + Q = R, find the value a, b and c

(b.) Solve the following pair of simultaneous equations using a matrix method.

$ 5x - 2y = 44 \\[3ex] 2x + 3y = 10 \\[3ex] $

$ (a.) \\[3ex] 3 + (-1) = c \\[3ex] c = 3 - 1 \\[3ex] c = 2 \\[5ex] -9 + b = -3 \\[3ex] b = -3 + 9 \\[3ex] b = 6 \\[5ex] a + (-4) = -4 \\[3ex] a - 4 = -4 \\[3ex] a = -4 + 4 \\[3ex] a = 0 \\[3ex] $ (b.) Using a matrix method probably means using any of these methods:
Method of Determinants (also known as Cramer's Rule)
Row Reduction Method (also known as the Guass-Jordan Method or the Guassian Elimination Method)
Matrix Inverse Method
We shall solve the simultaneous equation using those three methods/approaches.
Then, we shall check our solution.
Use any method required by your teacher.

$ \underline{\text{1st Approach: Cramer's Rule}} \\[3ex] \begin{bmatrix} 5 & -2 \\[2ex] 2 & 3 \end{bmatrix} \begin{bmatrix} x \\[2ex] y \end{bmatrix} = \begin{bmatrix} 44 \\[2ex] 10 \end{bmatrix} \\[10ex] \underline{\text{Denominator}} \\[3ex] \begin{vmatrix} 5 & -2 \\[3ex] 2 & 3 \end{vmatrix} \\[7ex] = 5(3) - 2(-2) \\[3ex] = 15 + 4 \\[3ex] = 19 \\[5ex] \underline{\text{Numerator for }x} \\[3ex] \begin{vmatrix} 44 & -2 \\[3ex] 10 & 3 \end{vmatrix} \\[7ex] = 44(3) - 10(-2) \\[3ex] = 132 + 20 \\[3ex] = 152 \\[5ex] x = \dfrac{152}{19} = 8 \\[5ex] \underline{\text{Numerator for }y} \\[3ex] \begin{vmatrix} 5 & 44 \\[3ex] 2 & 10 \end{vmatrix} \\[7ex] = 5(10) - 2(44) \\[3ex] = 50 - 88 \\[3ex] = -38 \\[5ex] y = \dfrac{-38}{19} = -2 $

$ \underline{\text{2nd Approach: Gauss-Jordan Method}} \\[3ex] \left[ \begin{array}{cc|c} 1 & 0 & x \\[3ex] 0 & 1 & y \end{array} \right] \\[10ex] \left[ \begin{array}{cc|c} 5 & -2 & 44 \\[3ex] 2 & 3 & 10 \end{array} \right] \underrightarrow{-2R_1 + 5R_2} \left[ \begin{array}{cc|c} 5 & -2 & 44 \\[3ex] 0 & 19 & -38 \end{array} \right] \underrightarrow{2R_2 + 19R_1} $

$ \left[ \begin{array}{cc|c} 95 & 0 & 760 \\[3ex] 0 & 19 & -38 \end{array} \right] \begin{matrix} \underrightarrow{R_1 \div 95} \\ \underrightarrow{R_2 \div 19} \end{matrix} \left[ \begin{array}{cc|c} 1 & 0 & 8 \\[3ex] 0 & 1 & -2 \end{array} \right] \\[10ex] x = 8 \\[3ex] y = -2 $

$ \underline{\text{3rd Approach: Matrix Inverse Method}} \\[3ex] Let\;\;A = \begin{bmatrix} 5 & -2 \\[2ex] 2 & 3 \end{bmatrix} \hspace{3em} B = \begin{bmatrix} 44 \\[2ex] 10 \end{bmatrix} \\[10ex] adj\;A = \begin{bmatrix} 3 & -(-2) \\[2ex] -2 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\[2ex] -2 & 5 \end{bmatrix} \\[10ex] det\;A = \begin{vmatrix} 5 & -2 \\[3ex] 2 & 3 \end{vmatrix} \\[7ex] = 5(3) - 2(-2) \\[3ex] = 15 + 4 \\[3ex] = 19 \\[5ex] A^{-1} = \dfrac{adj\;A}{det\;A} \\[5ex] = \dfrac{\begin{bmatrix} 3 & 2 \\[2ex] -2 & 5 \end{bmatrix}}{19} \\[10ex] = \begin{bmatrix} \dfrac{3}{19} & \dfrac{2}{19} \\[5ex] -\dfrac{2}{19} & \dfrac{5}{19} \end{bmatrix} \\[12ex] \begin{bmatrix} x \\[2ex] y \end{bmatrix} = A^{-1} * B \\[10ex] = \begin{bmatrix} \dfrac{3}{19} & \dfrac{2}{19} \\[5ex] -\dfrac{2}{19} & \dfrac{5}{19} \end{bmatrix} * \begin{bmatrix} 44 \\[2ex] 10 \end{bmatrix} \\[12ex] = \begin{bmatrix} \dfrac{3}{19}(44) & \dfrac{2}{19}(10) \\[5ex] -\dfrac{2}{19}(44) & \dfrac{5}{19}(10) \end{bmatrix} \\[12ex] = \begin{bmatrix} \dfrac{132}{19} + \dfrac{20}{19} \\[5ex] -\dfrac{88}{19} + \dfrac{50}{19} \end{bmatrix} \\[12ex] = \begin{bmatrix} \dfrac{152}{19} \\[5ex] -\dfrac{38}{19} \end{bmatrix} \\[12ex] = \begin{bmatrix} 8 \\[2ex] -2 \end{bmatrix} \\[10ex] x = 8 \\[3ex] y = -2 \\[3ex] $ Check
$x = 8, \;\;\; y = -2$
LHS RHS
$ 5x - 2y \\[3ex] 5(8) - 2(-2) \\[3ex] 40 + 4 \\[3ex] 44 $ $44$
$ 2x + 3y \\[3ex] 2(8) + 3(-2) \\[3ex] 16 - 6 \\[3ex] 10 $ $10$
(8.)


(9.)

(10.)


(11.)

(12.)


(13.)

(14.)


(15.)

(16.)


(17.)

(18.)


(19.)

(20.)






Top




(21.)

(22.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.