Please Read Me.

Trigonometry

Welcome to Our Site


I greet you this day,
These are the solutions to the CSEC past questions on the topics in Trigonometry.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and if of these resources were helpful in your passing the Mathematics test of the ACT, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.


Please NOTE: For applicable questions (questions that require the angle in degrees), if you intend to use the TI-84 Family:
Please make sure you set the MODE to DEGREE.
It is RADIAN by default. So, it needs to be set to DEGREE.

Calculator Mode

Formula Sheet: List of Formulae

Trigonometric Functions

Right Triangle Trigonometry for any angle, say $\theta$
Pneumonic for it is: SOHCAHTOA and cosecHOsecHAcotanAO

$ (1.)\;\; \sin \theta = \dfrac{opp}{hyp} \\[7ex] (2.)\;\; \cos \theta = \dfrac{adj}{hyp} \\[7ex] (3.)\;\; \tan \theta = \dfrac{\sin \theta}{\cos \theta} \\[5ex] = \sin \theta \div \cos \theta \\[3ex] = \dfrac{opp}{hyp} \div \dfrac{adj}{hyp} \\[5ex] = \dfrac{opp}{hyp} * \dfrac{hyp}{adj} \\[5ex] \therefore \tan \theta = \dfrac{opp}{adj} \\[7ex] (4.)\;\; \csc \theta = \dfrac{1}{\sin \theta} \\[5ex] = 1 \div \sin \theta \\[3ex] = 1 \div \dfrac{opp}{hyp} \\[5ex] \therefore \csc \theta = \dfrac{hyp}{opp} \\[7ex] (5.)\;\; \sec \theta = \dfrac{1}{\cos \theta} \\[5ex] = 1 \div \cos \theta \\[3ex] = 1 \div \dfrac{adj}{hyp} \\[5ex] \therefore \sec \theta = \dfrac{hyp}{adj} \\[7ex] (6.)\;\; \cot \theta = \dfrac{1}{\tan \theta} = \dfrac{\cos \theta}{\sin \theta} \\[5ex] = \cos \theta \div \sin \theta \\[3ex] = \dfrac{adj}{hyp} \div \dfrac{opp}{hyp} \\[5ex] = \dfrac{adj}{hyp} * \dfrac{hyp}{opp} \\[5ex] \therefore \cot \theta = \dfrac{adj}{opp} $

Summary: The Unit Circle

$\theta$ in DEG $\theta$ in RAD $\sin \theta$ $\cos \theta$ $\tan \theta$ $\csc \theta$ $\sec \theta$ $\cot \theta$
$0$ $0$ $0$ $1$ $0$ $undefined$ $1$ $undefined$
$30$ $\dfrac{\pi}{6}$ $\dfrac{1}{2}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{\sqrt{3}}{3}$ $2$ $\dfrac{2\sqrt{3}}{3}$ $\sqrt{3}$
$45$ $\dfrac{\pi}{4}$ $\dfrac{\sqrt{2}}{2}$ $\dfrac{\sqrt{2}}{2}$ $1$ $\sqrt{2}$ $\sqrt{2}$ $1$
$60$ $\dfrac{\pi}{3}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{2}$ $\sqrt{3}$ $\dfrac{2\sqrt{3}}{3}$ $2$ $\dfrac{\sqrt{3}}{3}$
$90$ $\dfrac{\pi}{2}$ $1$ $0$ $undefined$ $1$ $undefined$ $0$
$120$ $\dfrac{2\pi}{3}$ $\dfrac{\sqrt{3}}{2}$ $-\dfrac{1}{2}$ $-\sqrt{3}$ $\dfrac{2\sqrt{3}}{3}$ $-2$ $-\dfrac{\sqrt{3}}{3}$
$135$ $\dfrac{3\pi}{4}$ $\dfrac{\sqrt{2}}{2}$ $-\dfrac{\sqrt{2}}{2}$ $-1$ $\sqrt{2}$ $-\sqrt{2}$ $-1$
$150$ $\dfrac{5\pi}{6}$ $\dfrac{1}{2}$ $-\dfrac{\sqrt{3}}{2}$ $-\dfrac{\sqrt{3}}{3}$ $2$ $-\dfrac{2\sqrt{3}}{3}$ $-\sqrt{3}$
$180$ $\pi$ $0$ $-1$ $0$ $undefined$ $-1$ $undefined$
$210$ $\dfrac{7\pi}{6}$ $-\dfrac{1}{2}$ $-\dfrac{\sqrt{3}}{2}$ $\dfrac{\sqrt{3}}{3}$ $-2$ $-\dfrac{2\sqrt{3}}{3}$ $\sqrt{3}$
$225$ $\dfrac{5\pi}{4}$ $-\dfrac{\sqrt{2}}{2}$ $-\dfrac{\sqrt{2}}{2}$ $1$ $-\sqrt{2}$ $-\sqrt{2}$ $1$
$240$ $\dfrac{4\pi}{3}$ $-\dfrac{\sqrt{3}}{2}$ $-\dfrac{1}{2}$ $\sqrt{3}$ $-\dfrac{2\sqrt{3}}{3}$ $-2$ $\dfrac{\sqrt{3}}{3}$
$270$ $\dfrac{3\pi}{2}$ $-1$ $0$ $undefined$ $-1$ $undefined$ $0$
$315$ $\dfrac{7\pi}{4}$ $-\dfrac{\sqrt{2}}{2}$ $\dfrac{\sqrt{2}}{2}$ $-1$ $-\sqrt{2}$ $\sqrt{2}$ $-1$
$300$ $\dfrac{5\pi}{3}$ $-\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{2}$ $-\sqrt{3}$ $-\dfrac{2\sqrt{3}}{3}$ $2$ $-\dfrac{\sqrt{3}}{3}$
$330$ $\dfrac{11\pi}{6}$ $-\dfrac{1}{2}$ $\dfrac{\sqrt{3}}{2}$ $-\dfrac{\sqrt{3}}{3}$ $-2$ $\dfrac{2\sqrt{3}}{3}$ $-\sqrt{3}$
$360$ $2\pi$ $0$ $1$ $0$ $undefined$ $1$ $undefined$

Trigonometric Identities

\begin{array}{c | c} II & I \\ \hline III & IV \end{array} = \begin{array}{c | c} S & A \\ \hline T & C \end{array} = \begin{array}{c | c} Sine\:\: is\:\: positive & All\:\: are\:\: positive \\ \hline Tangent\:\: is\:\: positive & Cosine\:\: is\:\: positive \end{array}



The pneumonic to remember it:
First Quadrant to Fourth Quadrant (clockwise direction): A-C-T-S (ACTS of the Apostles)

First Quadrant to Fourth Quadrant (counter-clockwise direction): A-S-T-C: ADD - SUGAR - TO - COFFEE

Fourth Quadrant to Third Quadrant (counter-clockwise direction): C-A-S-T (Simon Peter, CAST your net into the sea.)

Second Quadrant to Third Quadrant (clockwise direction): S-A-C-T

Cofunction Identities (Identities of Complements)
First Quadrant Identities
First Quadrant: All (sine, cosine, tangent) are positive
This implies that cosecant, secant, and cotangent are also positive.

Given: two angles say: $\alpha$ and $\beta$;
If $\alpha$ and $\beta$ are complementary, then the:
Sine function and the Cosine functions are cofunctions

$ \sin \alpha = \cos \beta \\[3ex] \cos \alpha = \sin \beta \\[3ex] $ Tangent function and the Cotangent functions are cofunctions

$ \tan \alpha = \cot \beta \\[3ex] \cot \alpha = \tan \beta \\[3ex] $ Secant function and the Cosecant functions are cofunctions

$ \sec \alpha = \csc \beta \\[3ex] \csc \alpha = \sec \beta \\[3ex] $ Given: one angle say: $\theta$;
First Quadrant Identities or Cofunction Identities or Identities of Complements

$0 \lt \theta \lt 90 ...Angle\:\: in\:\: Degrees \\[3ex]$ Reference Angle = $\theta$ ... Angle in Degrees

$0 \lt \theta \lt \dfrac{\pi}{2} ...Angle\:\: in\:\: Radians \\[5ex]$ Reference Angle = $\theta$ ... Angle in Radians

First Quadrant: sine, cosine, tangent are positive
This implies that cosecant, secant, and cotangent are also positive

Complement of $\theta$ = $90 - \theta$ where $\theta$ is in degrees:

Complement of $\theta$ = $\dfrac{\pi}{2} - \theta$ where $\theta$ is in radians:

$ (1.)\:\: \sin \theta = \cos (90 - \theta) \\[3ex] (2.)\:\: \sin \theta = \cos \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (3.)\:\: \cos \theta = \sin (90 - \theta) \\[3ex] (4.)\:\: \cos \theta = \sin \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (5.)\:\: \tan \theta = \cot (90 - \theta) \\[3ex] (6.)\:\: \tan \theta = \cot \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (7.)\:\: \cot \theta = \tan (90 - \theta) \\[3ex] (8.)\:\: \cot \theta = \tan \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (9.)\:\: \sec \theta = \csc (90 - \theta) \\[3ex] (10.)\:\: \sec \theta = \csc \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (11.)\:\: \csc \theta = \sec (90 - \theta) \\[3ex] (12.)\:\: \csc \theta = \sec \left(\dfrac{\pi}{2} - \theta \right) \\[7ex] $ Second Quadrant Identities or Identities of Supplements

$90 \lt \theta \lt 180$ ... Angle in Degrees
Reference Angle = $180 - \theta$ ... Angle in Degrees
$\dfrac{\pi}{2} \lt \theta \lt \pi$ ... Angle in Radians
Reference Angle = $\pi - \theta$ ... Angle in Radians
Second Quadrant: sine is positive
This implies that cosecant is also positive
Symmetric across the y-axis

Given: one angle say: $\theta$;
Supplement of $\theta$ = $180 - \theta$ where $\theta$ is in degrees:
Supplement of $\theta$ = $\pi - \theta$ where $\theta$ is in radians:

$ (1.)\;\; \sin \theta = \sin (180 - \theta) \\[3ex] (2.)\;\; \sin (180 - \theta) = \sin \theta \\[3ex] (3.)\;\; \sin \theta = \sin (\pi - \theta) \\[3ex] (4.)\;\; \sin (\pi - \theta) = \sin \theta \\[3ex] (5.)\;\; \cos \theta = -\cos (180 - \theta) \\[3ex] (6.)\;\; \cos (180 - \theta) = -\cos \theta \\[3ex] (7.)\;\; \cos \theta = -\cos (\pi - \theta) \\[3ex] (8.)\;\; \cos (\pi - \theta) = -\cos \theta \\[3ex] (9.)\;\; \tan \theta = -\tan (180 - \theta) \\[3ex] (10.)\;\; \tan (180 - \theta) = -\tan \theta \\[3ex] (11.)\;\; \tan \theta = -\tan (\pi - \theta) \\[3ex] (12.)\;\; \tan (\pi - \theta) = -\tan \theta \\[5ex] $ Third Quadrant Identities
$180 \lt \theta \lt 270$ ... Angle in Degrees
Reference Angle = $\theta - 180$ ... Angle in Degrees
$\pi \lt \theta \lt \dfrac{3\pi}{2}$ ... Angle in Radians
Reference Angle = $\theta - \pi$ ... Angle in Radians
Third Quadrant: tangent is positive
This implies that cotangent is also positive
Symmetric across the origin

Given: one angle say: $\theta$;

$ (1.)\;\; \sin \theta = -\sin (\theta - 180) \\[3ex] (2.)\;\; \sin (\theta - 180) = -\sin \theta \\[3ex] (3.)\;\; \sin \theta = -\sin (\theta - \pi) \\[3ex] (4.)\;\; \sin (\theta - \pi) = -\sin \theta \\[3ex] (5.)\;\; \cos \theta = -\cos (\theta - 180) \\[3ex] (6.)\;\; \cos (\theta - 180) = -\cos \theta \\[3ex] (7.)\;\; \cos \theta = -\cos (\theta - \pi) \\[3ex] (8.)\;\; \cos (\theta - \pi) = -\cos \theta \\[3ex] (9.)\;\; \tan \theta = \tan (\theta - 180) \\[3ex] (10.)\;\; \tan (\theta - 180) = \tan \theta \\[3ex] (11.)\;\; \tan \theta = \tan (\theta - \pi) \\[3ex] (12.)\;\; \tan (\theta - \pi) = \tan \theta \\[5ex] $ Fourth Quadrant Identities
$270 \lt \theta \lt 360$ ... Angle in Degrees
Reference Angle = $360 - \theta$ ... Angle in Degrees
$\dfrac{3\pi}{2} \lt \theta \lt 2\pi$ ... Angle in Radians
Reference Angle = $2\pi - \theta$ ... Angle in Radians
Fourth Quadrant: cosine is positive
This implies that secant is also positive
Symmetric across the x-axis

Given: one angle say: $\theta$;

$ (1.)\;\; \sin \theta = -\sin (360 - \theta) \\[3ex] (2.)\;\; \sin (360 - \theta) = -\sin \theta \\[3ex] (3.)\;\; \sin \theta = -\sin (2\pi - \theta) \\[3ex] (4.)\;\; \sin (2\pi - \theta) = -\sin \theta \\[3ex] (5.)\;\; \cos \theta = \cos (360 - \theta) \\[3ex] (6.)\;\; \cos (360 - \theta) = \cos \theta \\[3ex] (7.)\;\; \cos \theta = \cos (2\pi - \theta) \\[3ex] (8.)\;\; \cos (2\pi - \theta) = \cos \theta \\[3ex] (9.)\;\; \tan \theta = -\tan (360 - \theta) \\[3ex] (10.)\;\; \tan (360 - \theta) = -\tan \theta \\[3ex] (11.)\;\; \tan \theta = -\tan (2\pi - \theta) \\[3ex] (12.)\;\; \tan (2\pi - \theta) = -\tan \theta \\[3ex] $ Reciprocal Identities

$ (1.)\;\; \csc \theta = \dfrac{1}{\sin \theta} \\[3ex] (2.)\;\; \sec \theta = \dfrac{1}{\cos \theta} \\[3ex] (3.)\;\; \cot \theta = \dfrac{1}{\tan \theta} \\[3ex] $ From Reciprocal Identities

$ (1.)\;\; \sin \theta = \dfrac{1}{\csc \theta} \\[3ex] (2.)\;\; \cos \theta = \dfrac{1}{\sec \theta} \\[3ex] (3.)\;\; \tan \theta = \dfrac{1}{\cot \theta} \\[5ex] $ Quotient Identities
$ (1.)\;\; \tan \theta = \dfrac{\sin \theta}{\cos \theta} \\[3ex] (2.)\;\; \cot \theta = \dfrac{\cos \theta}{\sin \theta} \\[3ex] $ As you can see, $\cot \theta$ has two formulas

$ \cot \theta = \dfrac{1}{\tan \theta} \\[5ex] \cot \theta = \dfrac{\cos \theta}{\sin \theta} \\[5ex] $ Sometimes, we shall use the first one. Sometimes, we shall use the second one.
We have to use the formula that will not give us an undefined value (where the denominator is zero)

Even Identities
Recall: a function, say $f(x)$ is even if $f(-x) = f(x)$
In Trigonometry, the cosine function and the secant function are even functions.

$ (1.)\;\; \cos (-\theta) = \cos \theta \\[3ex] (2.)\;\; \sec (-\theta) = \sec \theta \\[5ex] $ Odd Identities
Recall: a function, say $f(x)$ is odd if $f(-x) = -f(x)$
In Trigonometry, the sine function, the cosecant function, the tangent function, and the cotangent function are odd functions.

$ (1.)\;\; \sin (-\theta) = -\sin \theta \\[3ex] (2.)\;\; \csc (-\theta) = -\csc \theta \\[3ex] (3.)\;\; \tan (-\theta) = -\tan \theta \\[3ex] (4.)\;\; \cot (-\theta) = -\cot \theta \\[5ex] $ Pythagorean Identities

$ (1.)\;\; \sin^2 \theta + \cos^2 \theta = 1 \\[3ex] (2.)\;\; \tan^2 \theta + 1 = \sec^2 \theta \\[3ex] (3.)\;\; \cot^2 \theta + 1 = \csc^2 \theta \\[3ex] $ From Pythagorean Identities

$ (1.)\;\; \sin \theta = \pm \sqrt{1 - \cos^2 \theta} \\[3ex] (2.)\;\; \cos \theta = \pm \sqrt{1 - \sin^2 \theta} \\[3ex] (3.)\;\; \tan \theta = \pm \sqrt{\sec^2 \theta - 1} \\[3ex] (4.)\;\; \sec \theta = \pm \sqrt{\tan^2 \theta + 1} \\[3ex] (5.)\;\; \cot \theta = \pm \sqrt{\csc^2 \theta - 1} \\[3ex] (6.)\;\; \csc \theta = \pm \sqrt{\cot^2 \theta + 1} $

Trigonometric Formulas

Sum and Difference Formulas

$ (1.)\;\; \sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\[3ex] (2.)\;\; \cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\[3ex] (3.)\;\; \tan (\alpha \pm \beta) = \dfrac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \\[5ex] $ Half-Angle Formulas

$ (1.)\;\; \sin \dfrac{\theta}{2} = \pm \sqrt{\dfrac{1 - \cos \theta}{2}} \\[5ex] (2.)\;\; \cos {\theta \over 2} = \pm \sqrt{\dfrac{1 + \cos \theta}{2}} \\[5ex] (3.)\;\; \tan {\theta \over 2} = \pm \sqrt{\dfrac{1 - \cos \theta}{1 + \cos \theta}} \\[5ex] (4.)\;\; \tan {\theta \over 2} = \dfrac{\sin \theta}{1 + \cos \theta} \\[5ex] (5.)\;\; \tan {\theta \over 2} = \dfrac{1 - \cos \theta}{\sin \theta} \\[5ex] $ Formulas from Half-Angle Formulas

$ (1.)\;\; \sin^2 \dfrac{\theta}{2} = \dfrac{1 - \cos \theta}{2} \\[5ex] (2.)\;\; \cos^2 \dfrac{\theta}{2} = \dfrac{1 + \cos \theta}{2} \\[5ex] (3.)\;\; \tan^2 \dfrac{\theta}{2} = \dfrac{1 - \cos \theta}{1 + \cos \theta} \\[7ex] $ Double-Angle Formulas

$ (1.)\;\; \sin (2\theta) = 2 \sin \theta \cos \theta \\[3ex] (2.)\;\; \cos (2\theta) = \cos^2 \theta - \sin^2 \theta \\[3ex] (3.)\;\; \cos (2\theta) = 1 - 2\sin^2 \theta \\[3ex] (4.)\;\; \cos (2\theta) = 2\cos^2 \theta - 1 \\[3ex] (5.)\;\; \tan (2\theta) = \dfrac{2\tan \theta}{1 - \tan^2 \theta} \\[5ex] $ Formulas from Double-Angle Formulas

$ (1.)\;\; \sin^2 \theta = \dfrac{1 - \cos(2\theta)}{2} \\[5ex] (2.)\;\; \cos^2 \theta = \dfrac{1 + \cos(2\theta)}{2} \\[5ex] (3.)\;\; \tan^2 \theta = \dfrac{1 - \cos(2\theta)}{1 + \cos(2\theta)} \\[7ex] $ Triple-Angle Formulas

$ (1.)\;\; \sin (3\theta) = 3 \sin \theta - 4\sin^3 \theta \\[3ex] (2.)\;\; \cos (3\theta) = 4 \cos^3 \theta - 3 \cos \theta \\[3ex] (3.)\;\; \tan (3\theta) = \dfrac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} \\[7ex] $ Sum-to-Product Formulas

$ (1.)\;\; \sin \alpha + \sin \beta = 2 \sin \left(\dfrac{\alpha + \beta}{2}\right) \cos \left(\dfrac{\alpha - \beta}{2}\right) \\[5ex] (2.)\;\; \sin \alpha - \sin \beta = 2 \sin \left(\dfrac{\alpha - \beta}{2}\right) \cos \left(\dfrac{\alpha + \beta}{2}\right) \\[5ex] (3.)\;\; \cos \alpha + \cos \beta = 2 \cos \left(\dfrac{\alpha + \beta}{2}\right) \cos \left(\dfrac{\alpha - \beta}{2}\right) \\[5ex] (4.)\;\; \cos \alpha - \cos \beta = -2 \sin \left(\dfrac{\alpha + \beta}{2}\right) \sin \left(\dfrac{\alpha - \beta}{2}\right) \\[5ex] $ Ask students to write the compact form / shortened form of the first two Sum-to-Product Formulas.

Sum-to-Product Formulas (Compact Form of the First Two Formulas)

$ (1.)\;\; \sin \alpha \pm \sin \beta = 2 \sin \dfrac{\alpha \pm \beta}{2} \cos \dfrac{\alpha \mp \beta}{2} \\[7ex] $ Product-to-Sum Formulas

$ (1.) \sin \alpha * \sin \beta = \dfrac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)] \\[5ex] (2.) \cos \alpha * \cos \beta = \dfrac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)] \\[5ex] (3.) \sin \alpha * \cos \beta = \dfrac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha + \beta)] \\[5ex] $

Factoring Formulas

x is any trigonometric ratio
y is any trigonometric ratio

$ \underline{Difference\;\;of\;\;Two\;\;Squares} \\[3ex] (1.)\;\;x^2 - y^2 = (x + y)(x - y) \\[5ex] \underline{Difference\;\;of\;\;Two\;\;Cubes} \\[3ex] (2.)\;\; x^3 - y^3 = (x - y)(x^2 + xy + y^2) \\[5ex] \underline{Sum\;\;of\;\;Two\;\;Cubes} \\[3ex] (3.)\;\; x^3 + y^3 = (x + y)(x^2 - xy + y^2) \\[5ex] $

Triangle Laws

Pythagorean Theorem:
Applies only to right triangles.
In a right triangle, the square of the length of the hypotenuse is the sum of the squares of the other two sides.

$hyp^2 = leg^2 + leg^2$

x is any trigonometric ratio
y is any trigonometric ratio

Sine Law:
Applies to all triangles.
It states that the ratio of the side length of any triangle to the sine of the angle measure opposite that side is the same for the three sides of the triangle.

$ \dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} \\[5ex] $ OR

The ratio of the angle measure of any triangle to the side length opposite that angle is the same for the three angles of the triangle.

$ \dfrac{\sin A}{a} = \dfrac{\sin B}{b} = \dfrac{\sin C}{c} \\[5ex] $ Cosine Law:
Applies to all triangles.
It states that the square of a side of a triangle is the difference between the sum of the squares of the other two sides and twice the product of the two sides and the included angle.

$ a^2 = b^2 + c^2 - 2bc \cos A \\[3ex] \cos A = \dfrac{b^2 + c^2 - a^2}{2bc} \\[5ex] A = \cos^{-1} \left(\dfrac{b^2 + c^2 - a^2}{2bc}\right) \\[5ex] b^2 = a^2 + c^2 - 2ac \cos B \\[3ex] \cos B = \dfrac{a^2 + c^2 - b^2}{2ac} \\[5ex] B = \cos^{-1} \left(\dfrac{a^2 + c^2 - b^2}{2ac}\right) \\[5ex] c^2 = a^2 + b^2 - 2ab \cos C \\[3ex] \cos C = \dfrac{a^2 + b^2 - c^2}{2ab} \\[5ex] C = \cos^{-1} \left(\dfrac{a^2 + b^2 - c^2}{2ab}\right) \\[5ex] $

Circle Formulas

Except stated otherwise, use:

$ d = diameter \\[3ex] r = radius \\[3ex] L = arc\:\:length \\[3ex] A = area\;\;of\;\;sector \\[3ex] P = perimeter\;\;of\;\;sector \\[3ex] \theta = central\:\:angle \\[3ex] \pi = \dfrac{22}{7} \\[5ex] RAD = radians \\[3ex] ^\circ = DEG = degrees \\[7ex] \underline{\theta\;\;in\;\;DEG} \\[3ex] L = \dfrac{2\pi r\theta}{360} \\[5ex] \theta = \dfrac{180L}{\pi r} \\[5ex] r = \dfrac{180L}{\pi \theta} \\[5ex] A = \dfrac{\pi r^2\theta}{360} \\[5ex] \theta = \dfrac{360A}{\pi r^2} \\[5ex] r = \dfrac{360A}{\pi\theta} \\[5ex] P = \dfrac{r(\pi\theta + 360)}{180} \\[7ex] \underline{\theta\;\;in\;\;RAD} \\[3ex] L = r\theta \\[5ex] \theta = \dfrac{L}{r} \\[5ex] r = \dfrac{L}{\theta} \\[5ex] A = \dfrac{r^2\theta}{2} \\[5ex] \theta = \dfrac{2A}{r^2} \\[5ex] r = \sqrt{\dfrac{2A}{\theta}} \\[5ex] P = r(\theta + 2) \\[7ex] Circumference\:\:of\:\:a\:\:circle = 2\pi r = \pi d \\[3ex] L = \dfrac{2A}{r} \\[5ex] r = \dfrac{2A}{L} \\[5ex] A = \dfrac{Lr}{2} $

(1.) The diagram below shows a quadrilateral PQRS formed by joining two triangles, PQS and QRS

Number 1

(i.) Calculate the length of QR.

(ii.) The bearing of P from S is 205°
Determine the bearing of
(a.) R from S
(b.) S from P


$ (i.) \\[3ex] \underline{\triangle QRS} \\[3ex] |QR|^2 = |QS|^2 + |RS|^2 - 2 \cdot |QS| \cdot |RS| \cos \angle QSR...\text{Cosine Law} \\[4ex] = 18^2 + 16^2 - 2(18)(16) \cdot \cos 25^\circ \\[4ex] = 324 + 256 - 576(0906307787) \\[3ex] = 57.96671467\;m \\[3ex] $ (ii.) Let us update the information on the diagram
Please observe the colors.

Number 1

$ \text{Bearing of P from S} = 205^\circ ...\text{red color} \\[4ex] (a.) \\[3ex] \text{Bearing of R from S} = \phi^\circ ...\text{dark blue color} \\[4ex] \phi + 25^\circ + 72^\circ = 205^\circ...diagram \\[4ex] \phi = 205 - 25 - 72 \\[3ex] \phi = 108^\circ \\[5ex] (b.) \\[3ex] \text{Bearing of S from P} = \beta^\circ ...\text{green color} \\[4ex] \alpha = 180^\circ ...\text{angle on a straight line}...\text{brown color} \\[4ex] \beta = \beta ...\text{alternate interior angles are congruent} \\[4ex] \beta + \alpha = 205^\circ ...diagram \\[3ex] \beta + 180 = 205 \\[3ex] \beta = 205 - 180 \\[3ex] \beta = 25^\circ $
(2.) The diagram below shows a triangular field, LMP, on horizontal ground.

Number 2

(i.) Calculate the value of Angle MLP.

(ii.) The bearing of P from L is 210°.
(a.) Find the bearing of M from L.
(b.) Calculate the value of Angle NLP and hence, find the bearing of L from P.


Let:
|LP| = m
|LM| = p
|PM| = l
$\angle MLP = \hat{L}$

$ (i.) \\[3ex] \underline{\text{Cosine Law}} \\[3ex] \triangle PLM \\[3ex] l^2 = p^2 + m^2 - 2pm \cos \hat{L} \\[3ex] 180^2 = 120^2 + 150^2 - 2(120)(150) \cos \hat{L} \\[3ex] 32400 = 14400 + 22500 - 36000 \cos \hat{L} \\[3ex] 36000\cos \hat{L} = 14400 + 22500 - 32400 \\[3ex] \cos \hat{L} = \dfrac{4500}{36000} \\[5ex] \cos \hat{L} = 0.125 \\[3ex] \hat{L} = \cos^{-1}(0.125) \\[3ex] \hat{L} = 82.81924422^\circ \\[3ex] $ Let us represent the information on the diagram
Please see the colors for the angles

Number 2

The bearing of M from L = α
Angle NLP = β
Bearing of L from P = τ

$ (ii.)(a.) \\[3ex] \alpha + \hat{L} = 210^\circ ...diagram \\[3ex] \alpha + 82.81924422 = 210 \\[3ex] \alpha = 210 - 82.81924422 \\[3ex] \alpha = 127.1807558^\circ \\[5ex] (b.) \\[3ex] \beta + 210^\circ = 360^\circ ...\text{angles at a point} \\[3ex] \beta = 360 - 210 \\[3ex] \beta = 150^\circ \\[5ex] \tau = \tau ...\text{interior alternate angles are congruent} \\[3ex] \beta + \tau = 180^\circ ...\text{angles on a straight line} \\[3ex] \tau = 180 - \beta \\[3ex] \tau = 180 - 150 \\[3ex] \tau = 30^\circ $
(3.) A ship travels from Akron (A) on a bearing of 030° to Bellville (B), 90 km away.
It then travels to Comptin (C) which is 310 km due east of Akron (A), as shown in the diagram below.

Number 3

(i.) Indicate on the diagram the bearing 030° and the distances 90 km and 310 km
(ii.) Calculate, to the nearest km, the distance between Bellville (B) and Comptin (C)
(iii.) Calculate, to the nearest degree, the measure of $A\hat{B}C$
(iv.) Determine the bearing of Comptin (C) from Bellville (B)


(i.)
Number 3i

$ (ii.) \\[3ex] \underline{\triangle ABC} \\[3ex] B\hat{A}C + 30 = 90 ...perpendicular\;\;angle \\[3ex] B\hat{A}C = 90 - 30 = 60^\circ \\[3ex] |BC|^2 = |AB|^2 + |AC|^2 - 2(|AB|)(|AC|) \cos B\hat{A}C \\[3ex] |BC|^2 = 90^2 + 310^2 - 2(90)(310) * \cos 60 \\[3ex] |BC|^2 = 8100 + 96100 - 55800 * 0.5 \\[3ex] |BC|^2 = 104200 - 27900 \\[3ex] |BC|^2 = 76300 \\[3ex] |BC| = \sqrt{76300} \\[3ex] |BC| = 276.2245463 \\[3ex] |BC| \approx 276\;km \\[5ex] (iii.) \\[3ex] \underline{\triangle ABC} \\[3ex] \dfrac{\sin A\hat{B}C}{310} = \dfrac{\sin B\hat{A}C}{|BC|}...Sine\;\;Law \\[5ex] \dfrac{\sin A\hat{B}C}{310} = \dfrac{\sin 60}{276.2245463} \\[5ex] \sin A\hat{B}C = \dfrac{310 * \sin 60}{276.2245463} \\[5ex] \sin A\hat{B}C = \dfrac{310 * 0.8660254038}{276.2245463} \\[5ex] \sin A\hat{B}C = \dfrac{268.4678752}{276.2245463} \\[5ex] \sin A\hat{B}C = 0.9719189651 \\[3ex] A\hat{B}C = \sin^{-1}(0.9719189651) \\[3ex] A\hat{B}C = 76.38976123 \\[3ex] A\hat{B}C \approx 76^\circ \\[5ex] (iv.) \\[3ex] $ Number 3iv

$ Bearing\;\;of\;\;Comptin\;\;from\;\;Bellville = \theta \\[3ex] \phi = 30^\circ...alternate\;\; \angle s\;\;are\;\;equal \\[3ex] \phi + \tau = A\hat{B}C ...diagram \\[3ex] 30 + \tau = 76.38976123 \\[3ex] \tau = 76.38976123 - 30 \\[3ex] \tau = 46.38976123 \\[3ex] \theta + \tau = 180...\angle s\;\;on\;\;a\;\;straight\;\;line \\[3ex] \theta = 180 - \tau \\[3ex] \theta = 180 - 46.38976123 \\[3ex] \theta = 133.6102388 \\[3ex] \theta \approx 133^\circ $
(4.)


(5.) E, F, G and H are 4 points on level ground.
The diagram below gives information on the distances and angles between the points.

Number 5

(i.) Show that the value of x is 29.5°, correct to 1 decimal place.

(ii.) A vertical tower, GT, is constructed at the point G and is pivoted to the ground at the points E, F and H using pieces of wire.
The angle of elevation of the top of the tower, T, from the point F is 31°
What length of wire was used to secure Point T to Point F?

(iii.) The bearing of E from H is 228°.
Find the bearing of:
(a.) H from E
(b.) G from H


$ (i.) \\[3ex] \underline{\text{Cosine Law}} \\[3ex] |GF|^2 = |GH|^2 + |HF|^2 - 2\cdot |GH|\cdot |HF|\cos\angle GHF \\[4ex] 6.9^2 = 5.3^2 + 11^2 - 2(5.3)(11)\cos x^\circ \\[4ex] 2(5.3)(11)\cos x = 5.3^2 + 11^2 - 6.9^2 \\[4ex] 116.6\cos x = 101.48 \\[3ex] \cos x = \dfrac{101.48}{116.6} \\[5ex] \cos x = 0.8703259005 \\[3ex] x = \cos^{-1}(0.8703259005) \\[4ex] x = 29.5034665 \\[3ex] x \approx 29.5^\circ...\text{to 1 decimal place} \\[3ex] $ (ii.) Indicate the information on the diagram.
Draw the vertical line: |GT| perpendicular at G
Show the angle of elevation of T from F

Number 5-1st

The length of wire was used to secure Point T to Point F = |FT|

$ \underline{\triangle TGF} \\[3ex] \cos 31^\circ = \dfrac{|FG|}{|FT|}...SOHCAHTOA \\[5ex] \cos 31 = \dfrac{6.9}{|FT|} \\[5ex] |FT| = \dfrac{6.9}{\cos 31} \\[5ex] = \dfrac{6.9}{0.8571673007} \\[5ex] = 8.049770441\;m \\[3ex] $ (iii.) Let us indicate these bearings on the diagram

Number 5-2nd

Let the bearing of H from E = α
Angle on a straight line = 180°
Let the bearing of G from H = β

$ (a.) \\[3ex] \alpha = \alpha ...\text{alternate interior angles are congruent} \\[3ex] \alpha = 228^\circ - 180^\circ ...diagram \\[4ex] \alpha = 48^\circ \\[5ex] (b.) \\[3ex] \beta = 228^\circ - 54^\circ ...diagram \\[4ex] \beta = 174^\circ $
(6.) The diagram below, not drawn to scale, shows the route of a ship cruising from Palmcity (P) to Quayton (Q) and then to Rivertown (R).
The bearing of Q from P is 133° and the angle PQR is 56°

Number 6

(i) Calculate the value of angle w
(ii) Determine the bearing of P from Q
(iii) Calculate the distance RP


$ (i) \\[3ex] 56 + w = 133 ...\text{alternate interior angles are equal} \\[3ex] w = 133 - 56 \\[3ex] w = 77^\circ \\[5ex] (ii) \\[3ex] Bearing\;\;of\;\;P\;\;from\;\;Q \\[3ex] = 180 + w + 56 \\[3ex] = 180 + 133 \\[3ex] = 313^\circ \\[5ex] (iii) \\[3ex] \underline{\text{Cosine Law}} \\[3ex] |RP|^2 = 210^2 + 290^2 - 2(210)(290) \cos 56^\circ \\[4ex] |RP|^2 = 44100 + 84100 - 121800 * 0.5591929035 \\[3ex] |RP|^2 = 128200 - 68109.69564 \\[3ex] |RP|^2 = 60090.30436 \\[3ex] |RP| = \sqrt{60090.30436} \\[3ex] |RP| = 245.133238 \\[3ex] |RP| \approx 245\;km $
(7.)

(8.) The diagram below, not drawn to scale, shows two ships, R and S at anchor on a lake of calm water.
FT is a vertical tower.
FSR is a straight line and RS = 150 m.
The angles of elevation of T, the top of a tower, from R and S, are 22° and 40° respectively.
F is the foot of the tower.

Number 8

Calculate, giving your answer to 1 decimal place where appropriate
(i) the measure of ∠RTS
(ii) the length of ST
(iii) the height of the tower, FT.


$ \angle RST + \angle FST = 180^\circ ...\angle s\;\;on\;\;a\;\;straight\;\;line \\[3ex] \angle RST + 40 = 180 \\[3ex] \angle RST = 180 - 40 \\[3ex] \angle RST = 140^\circ \\[5ex] (i) \\[3ex] \underline{\triangle TRS} \\[3ex] \angle RTS + \angle RST + \angle TRS = 180^\circ ...sum\;\;of\;\;\angle s\;\;in\;\;a\;\;\triangle \\[3ex] \angle RTS + 140 + 22 = 180 \\[3ex] \angle RTS + 162 = 180 \\[3ex] \angle RTS = 180 - 162 \\[3ex] \angle RTS = 18^\circ \\[5ex] (ii) \\[3ex] \dfrac{|ST|}{\sin \angle TRS} = \dfrac{|RS|}{\sin \angle RTS}...Sine\;\;Law \\[5ex] \dfrac{|ST|}{\sin 22^\circ} = \dfrac{150}{\sin 18^\circ} \\[5ex] |ST| = \dfrac{150\sin 22^\circ}{\sin 18^\circ} \\[5ex] |ST| = \dfrac{150(0.3746065934)}{0.3090169944} \\[5ex] |ST| = 181.8378602 \\[3ex] |ST| \approx 181.8\;m \\[5ex] (iii) \\[3ex] \underline{\triangle TSF} \\[3ex] \sin \angle TSF = \dfrac{|FT|}{ST|}...SOHCAHTOA \\[5ex] \sin 40^\circ = \dfrac{|FT|}{181.8378602} \\[5ex] |FT| = 181.8378602 \sin 40 \\[3ex] |FT| = 181.8378602(0.6427876097) \\[3ex] |FT| = 116.8831235 \\[3ex] |FT| \approx 116.9\;m $
(9.) Two ports, E and G, are on level ground, 245 km apart.
The bearing of E is 302°.
A ship is anchored at F, some distance away from G, on a bearing of 228°.
Angle EFG = 52°
This information is shown on the diagram below.

Number 9

(a.) On the diagram above, insert the angle 228°, the bearing of F from G
(b.) Determine the value of Angle FEG.
(c.) Calculate GF, the distance the ship is from Port G.
(d.) Indicate the point H on the line EF, such that GH is the SHORTEST distance from G to EF.
(e.) Determine the distance GH.


(a.) Number 9a

The red color in the diagram indicates 228°
Angle on a straight line = 180°
180° + 48° = 228°

(b.) Let us determine the value of Angle FGE first
Check out the blue color in the diagram
The bearing of E is 302°.

Number 9b-1st

Now, we can determine the value of Angle FEG
Number 9b-2nd

$ \underline{\triangle EFG} \\[3ex] \angle FEG + \angle FGE + \angle EFG = 180^\circ ...\text{sum of angles of a triangle} \\[4ex] \angle FEG + 74 + 52 = 180 \\[3ex] \angle FEG = 180 - 74 - 52 \\[3ex] \angle FEG = 54^\circ \\[4ex] (c.) \\[3ex] \dfrac{|GF|}{\sin \angle FEG} = \dfrac{|EG|}{\sin \angle EFG} ...\text{Sine Law} \\[5ex] \dfrac{|GF|}{\sin 54^\circ} = \dfrac{245}{\sin 52^\circ} \\[6ex] |GF| = \dfrac{245\sin 54^\circ}{\sin 52^\circ} \\[6ex] = \dfrac{245(0.8090169944)}{0.7880107536} \\[5ex] = 251.531039\;km \\[3ex] $ (d.) The shortest distance between a point and a line is always along the line perpendicular to it.
Therefore, the point H on the line EF, such that GH is the SHORTEST distance from G to EF is the perpendicular distance from the point G to the line EF at H

Number 9d

$ (e.) \\[3ex] \dfrac{|GH|}{\sin \angle HFG} = \dfrac{|GF|}{\sin \angle GHF} ...\text{Sine Law} \\[5ex] \dfrac{|GH|}{\sin 52^\circ} = \dfrac{251.531039}{\sin 90^\circ} \\[6ex] |GF| = \dfrac{251.531039\sin 52^\circ}{\sin 90^\circ} \\[6ex] = \dfrac{251.531039(0.7880107536)}{1} \\[5ex] = 198.2091636\;km $
(10.)


(11.) From a harbour, H, the bearing of two buoys, S and Q, are 185° and 311° respectively.
Q is 5.4 km from H while S is 3.5 km from H
(i) On the diagram below, which shows the sketch of this information, insert the value of the marked angle, QHS


Number 11

(ii) Calculate QS, the distance between the two buoys.
(iii) Calculate the bearing of S from Q


$ (i) \\[3ex] \angle QHS = 311 - 185 = 216^\circ \\[3ex] $ Number 11i

Number 11ii

$ (ii) \\[3ex] Let\;\; QS = h \\[3ex] h^2 = 5.4^2 + 3.5^2 - 2(5.4)(3.5) \cos 126^\circ...Cosine\;\;Law \\[3ex] h^2 = 29.16 + 12.25 - 37.8 * -0.5877852523 \\[3ex] h^2 = 41.41 + 22.21828254 \\[3ex] h^2 = 63.62828254 \\[3ex] h = \sqrt{63.62828254} \\[3ex] h = 7.976733826 \\[3ex] QS \approx 8.0\;km \\[3ex] $ Number 11iii

$ k + 126 + 185 = 360...\angle s\;\;at\;\;a\;\;point \\[3ex] k + 311 = 360 \\[3ex] k = 360 - 311 \\[3ex] k = 49^\circ \\[3ex] p = p ...alternate\;\; \angle s \\[3ex] p + k = 90 ...right\;\; \angle \\[3ex] p = 90 - k \\[3ex] p = 90 - 49 \\[3ex] p = 41^\circ \\[3ex] Considering\;\; \triangle QHS \\[3ex] \dfrac{\sin \angle SQH}{3.5} = \dfrac{\sin 126}{h}...Sine\;\;Law \\[5ex] \dfrac{\sin \angle SQH}{3.5} = \dfrac{0.8090169944}{7.976733826} \\[5ex] \sin \angle SQH = \dfrac{3.5 * 0.8090169944}{7.976733826} \\[5ex] \sin \angle SQH = \dfrac{2.83155948}{7.976733826} \\[5ex] \sin \angle SQH = 0.3549773055 \\[3ex] \angle SQH = \sin^{-1}(0.3549773055) \\[3ex] \angle SQH = 20.79205349^\circ \\[5ex] (iii) \\[3ex] Bearing\;\;of\;\; S\;\;from\;\;Q \\[3ex] = 90 + p + \angle SQH \\[3ex] = 90 + 41 + 20.79205349 \\[3ex] = 151.7920535 \\[3ex] \approx 152^\circ $
(12.)


(13.) A person at the top of a lighthouse, TB, sees two ships, S1 and S2, approaching the coast as illustrated in the diagram below.
The angles of depression are 20° and 12° respectively.
The ships are 110 m apart.
(i) Complete the diagram below by inserting the angles of depression and the distance between the ships.

Number 13

(ii) Determine, to the nearest metre,
(a) the distance, TS2, between the top of the lighthouse and Ship 2
(b) the height of the lighthouse, TB.


(i)
The angles of depression and the distance between the ships are shown in the diagram below:

Number 13

$ (ii) \\[3ex] \angle TS_1B = 20^\circ ...alternate\;\;\angle s\;\;are\;\;equal \\[3ex] \angle TS_1S_2 + \angle TS_1B = 180^\circ ...\angle s\;\;on\;\;a\;\;straight\;\;line \\[3ex] \angle TS_1S_2 + 20 = 180 \\[3ex] \angle TS_1S_2 = 180 - 20 \\[3ex] \angle TS_1S_2 = 160^\circ \\[3ex] \underline{\triangle TS_2S_1} \\[5ex] (a) \\[3ex] \dfrac{|TS_2|}{\sin\angle TS_1S_2} = \dfrac{|S_1S_2|}{\sin\angle S_1TS_2}...Sine\;\;Law \\[5ex] \dfrac{|TS_2|}{\sin 160^\circ} = \dfrac{110}{\sin 8^\circ} \\[5ex] |TS_2| = \dfrac{110\sin 160^\circ}{\sin 8^\circ} \\[5ex] |TS_2| = \dfrac{110(0.3420201433)}{0.139173101} \\[5ex] |TS_2| = 270.3267766\;m \\[3ex] |TS_2| \approx 270\;m \\[5ex] (b) \\[3ex] \angle TS_2B = 12^\circ ...alternate\;\;\angle s\;\;are\;\;equal \\[3ex] \underline{\triangle TS_2B} \\[3ex] \sin \angle TS_2B = \dfrac{|TB|}{|TS_2|}...SOHCAHTOA \\[5ex] \sin 12^\circ = \dfrac{|TB|}{270.3267766} \\[5ex] |TB| = 270.3267766\sin 12 \\[3ex] |TB| = 270.3267766(0.2079116908) \\[3ex] |TB| = 56.2040972 \\[3ex] |TB| \approx 56\;m $
(14.)


(15.)

(16.)


(17.) A boat leaves a dock at point A and travels for a distance of 15 km to point B on a bearing of 135°
The boat then changes course and travels for a distance of 8 km to point C on a bearing of 060°

(a.) Illustrate the above diagram in a clearly labelled diagram
The diagram should show the
(i.) north direction
(ii.) bearings 135° and 060°
(iii) distances 8 km and 15 km

(b.) Calculate
(i.) the distance AC
(ii.) $\angle BCA$
(iii.) the bearing of A from C


(a.)
Number 17a

$ (b.) \\[3ex] \theta = 45^\circ...alternate\;\;\angle s\;\;are\;\;equal \\[3ex] \theta + \phi = 90...complementary\;\;\angle s \\[3ex] \phi = 90 - \theta \\[3ex] \phi = 90 - 45 \\[3ex] \phi = 45^\circ \\[3ex] \angle ABC = B = \phi + 60...diagram \\[3ex] B = 45 + 60 \\[3ex] B = 105^\circ \\[5ex] (i.) \\[3ex] Distance\;\; AC = b \\[3ex] b^2 = a^2 + c^2 - 2ac \cos B...Cosine\;\;Law \\[3ex] b^2 = 8^2 + 15^2 - 2(8)(15) * \cos 105 \\[3ex] b^2 = 64 + 225 - 240 * - 0.2588190451 \\[3ex] b^2 = 289 + 62.11657082 \\[3ex] b^2 = 351.1165708 \\[3ex] b = \sqrt{351.1165708} \\[3ex] b = 18.73810478 \\[3ex] b \approx 19\;km \\[5ex] (ii.) \\[3ex] \angle BCA = \angle C \\[3ex] \dfrac{\sin C}{c} = \dfrac{\sin B}{b} \\[5ex] \dfrac{\sin C}{15} = \dfrac{\sin 105}{18.73810478} \\[5ex] \sin C = \dfrac{15\sin 105}{18.73810478} \\[5ex] \sin C = \dfrac{15(0.9659258263)}{18.73810478} \\[5ex] \sin C = \dfrac{14.48888739}{18.73810478} \\[5ex] \sin C = 0.773231208 \\[3ex] C = \sin^{-1}(0.773231208) \\[3ex] C = 50.64494187 \\[3ex] C \approx 51^\circ \\[3ex] $ Number 17b

$ (iii) \\[3ex] \tau = 60^\circ ...alternate\;\;\angle s\;\;are\;\;equal \\[3ex] Bearing\;\;of\;\;A\;\;from\;\;C \\[3ex] = 180 + \tau + \angle BCA \\[3ex] = 180 + 60 + 50.64494187 \\[3ex] = 290.6449419 \\[3ex] \approx 291^\circ $
(18.)


(19.)

(20.)






Top




(21.) (i.) Draw a diagram to represent the information given below.
Show clearly the north line in your diagram
Town F is 50 km east of town G
Town H is on a bearing of 040° from town F
The distance from F to H is 65 km

(ii) Calculate, to the nearest kilometre, the actual distance GH
(iii) Calculate, to the nearest degree, the bearing of H from G


(i)
Number 21

$ (ii) \\[3ex] \angle GFH = 90 + 40 = 130^\circ \\[3ex] |GH|^2 = |GF|^2 + |FH|^2 - 2 * |GF| * |FH| * \cos \angle GFH...Cosine\;\;Law \\[3ex] |GH|^2 = 50^2 + 65^2 - 2(50)(65) * \cos 130 \\[3ex] |GH|^2 = 2500 + 4225 - 6500 * -0.6427876097 \\[3ex] |GH|^2 = 6725 + 4178.119463 \\[3ex] |GH|^2 = 10903.11946 \\[3ex] |GH| = \sqrt{10903.11946} \\[3ex] |GH| = 104.4180035 \\[3ex] |GH| \approx 104\;km \\[5ex] (iii) \\[3ex] \dfrac{\sin \angle HGF}{|FH|} = \dfrac{\sin \angle GFH}{|GH|}...Sine\;\;Law \\[5ex] \dfrac{\sin \phi}{65} = \dfrac{\sin 130}{104.4180035} \\[5ex] \sin \phi = \dfrac{65 \sin 130}{104.4180035} \\[5ex] \sin \phi = \dfrac{65 * 0.7660444431}{104.4180035} \\[5ex] \sin \phi = \dfrac{49.7928888}{104.4180035} \\[5ex] \sin \phi = 0.4768611459 \\[3ex] \phi = \sin^{-1}(0.4768611459) \\[3ex] \phi = 28.48059838 \\[3ex] \theta + \phi = 90 ...right\;\;\angle \\[3ex] \theta = 90 - \phi \\[3ex] \theta = 90 - 28.48059838 \\[3ex] \theta = 61.51940162 \\[3ex] Bearing\;\;of\;\;H\;\;from\;\;G = \theta \approx 62^\circ $
(22.)


(23.)


(24.)


(25.) From a harbour, H, the bearing of two ships, Q and R, are 069° and 151° respectively.
Q is 175 km from H while R is 242 km from H

Number 25

(i) Complete the diagram above to show the information given.
(ii) Calculate QR, the distance between the two ships, to the nearest km.
(iii) Calculate how far due south is Ship R of the harbour, H


(i)
Number 25i

$ (ii) \\[3ex] |QR|^2 = |QH|^2 + |RH|^2 - 2 * |QH| * |RH| * \cos \angle QHR...Cosine\;\;Law \\[3ex] |QR|^2 = 175^2 + 242^2 - 2(175)(242) * \cos 82 \\[3ex] |QR|^2 = 30625 + 58564 - 84700 * 0.139173101 \\[3ex] |QR|^2 = 89189 - 11787.96165 \\[3ex] |QR|^2 = 77401.03835 \\[3ex] |QR| = \sqrt{77401.03835} \\[3ex] |QR| = 278.210421 \\[3ex] |QR| \approx 278\;km \\[5ex] $ Number 25iii

How far due south is Ship R of the harbour, H = |PH|

$ 69 + 82 + \theta = 180^\circ ...\angle s\;\;on\;\;a\;\;straight\;\;line \\[3ex] 151 + \theta = 180 \\[3ex] \theta = 180 - 151 \\[3ex] \theta = 29^\circ \\[3ex] \underline{\triangle HPR} \\[3ex] \cos \theta = \dfrac{|PH|}{|RH|}...SOHCAHTOA \\[3ex] \cos 29 = \dfrac{|PH|}{242} \\[5ex] 242 \cos 29 = |PH| \\[3ex] |PH| = 242 * \cos 29 \\[3ex] |PH| = 242(0.8746197071) \\[3ex] |PH| = 211.6579691 \\[3ex] |PH| \approx 212\;km $
(26.)


(27.) From a port, L, ship R is 250 kilometres on a bearing of 065°
Ship T is 180 kilometres from L on a bearing of 148°
This information is illustrated in the diagram below.

Number 27

(i) Complete the diagram above by inserting the value of angle RLT
(ii) Calculate RT, the distance between the two ships.
(iii) Determine the bearing of T from R.


The information is represented on the diagram:

Number 27i

$ (i) \\[3ex] \angle RLT + 65^\circ = 148^\circ...bearing\;\;of\;\;T\;\;from\;\;L \\[3ex] \angle RLT = 148 - 65 \\[3ex] \angle RLT = 83^\circ \\[5ex] (ii) \\[3ex] |RT|^2 = |LT|^2 + |LR|^2 - 2 * |LT| * |LR| * \cos \angle RLT...Cosine\;\;Law \\[3ex] |RT|^2 = 180^2 + 250^2 - 2(180)(250) * \cos 83^\circ \\[3ex] |RT|^2 = 32400 + 62500 - (90000 * 0.1218693434) \\[3ex] |RT|^2 = 94900 - 10968.24091 \\[3ex] |RT|^2 = 83931.75909 \\[3ex] |RT| = \sqrt{83931.75909} \\[3ex] |RT| = 289.7097843 \\[3ex] |RT| \approx 290\;km \\[3ex] $ Number 27iii

$ \dfrac{\sin \angle LRT}{|LT|} = \dfrac{\sin \angle RLT}{|RT|} ...Sine\;\;Law \\[5ex] \dfrac{\sin \theta}{180} = \dfrac{\sin 83}{289.7097843} \\[5ex] \sin \theta = \dfrac{180 * \sin 83}{289.7097843} \\[5ex] \sin \theta = \dfrac{178.6583073}{289.7097843} \\[5ex] \sin \theta = 0.6166802676 \\[3ex] \theta = \sin^{-1}(0.6166802676) \\[3ex] \theta = 38.07411323^\circ \\[3ex] \psi + \theta = 65^\circ ...alternate\;\;\angle s\;\;are\;\;equal \\[3ex] \psi = 65 - \theta \\[3ex] \psi = 65 - 38.07411323^\circ \\[3ex] \psi = 26.92588677^\circ \\[5ex] (iii) \\[3ex] Bearing\;\;of\;\;T\;\;from\;\;R \\[3ex] = 180 + \psi \\[3ex] = 180 + 26.92588677^\circ \\[3ex] = 206.9258868^\circ $
(28.)


(29.)


(30.)


(31.)


(32.)


(33.) The diagram below, not drawn to scale, shows the relative positions of three reservoirs B, F and G, all on level ground.
The distance BF = 32 km, FG = 55 km, ∠BFG is 103° and F is on a bearing of 042° from B.

Number 33

(i) Determine the bearing of B from F.
(ii) Calculate the distance BG, giving your answer to one decimal place.
(iii) Calculate, to the nearest degree, the bearing of G from B.


(i)

Number 33i

$ \phi = 42^\circ ...alternate\;\;\angle s\;\;are\;\;equal \\[3ex] Bearing\;\;of\;\;B\;\;from\;\;F\;\;(blue\;\;color) \\[3ex] = 180 + \phi \\[3ex] = 180 + 42 \\[3ex] = 222^\circ \\[3ex] (ii) \\[3ex] |BG|^2 = |BF|^2 + |FG|^2 - 2 * |BF| * |FG| * \cos \angle BFG ...Cosine\;\;Law \\[3ex] |BG|^2 = 32^2 + 55^2 - 2(32)(55) * \cos 103^\circ \\[3ex] |BG|^2 = 1024 + 3025 - 3520(-0.2249510543) \\[3ex] |BG|^2 = 4049 + 791.8277113 \\[3ex] |BG|^2 = 4840.827711 \\[3ex] |BG| = \sqrt{4840.827711} \\[3ex] |BG| = 69.57605703 \\[3ex] |BG| \approx 70\;km \\[3ex] $ Number 33iii

$ \dfrac{\sin \angle FBG}{|FG|} = \dfrac{\sin \angle BFG}{|BG|} ...Sine\;\;Law \\[5ex] \dfrac{\sin \angle FBG}{55} = \dfrac{\sin 103^\circ}{69.57605703} \\[5ex] \sin \angle FBG = \dfrac{55\sin 103^\circ}{69.57605703} \\[5ex] \sin \angle FBG = \dfrac{55(0.9743700648)}{69.57605703} \\[5ex] \sin \angle FBG = 0.7702413136 \\[3ex] \angle FBG = \sin^{-1}(0.7702413136) \\[3ex] \angle FBG = 50.37556355^\circ \\[3ex] Bearing\;\;of\;\;G\;\;from\;\;B\;\;(red\;\;color) \\[3ex] = 42 + \angle FBG \\[3ex] = 42 + 50.37556355 \\[3ex] = 92.37556355 \\[3ex] \approx 92^\circ $
(34.)


(35.)


(36.)


(37.) A ship leaves Port A and sails 52 km on a bearing of 044° to Port B.
The ship then changes course to sail to Port C, 72 km away, on a bearing of 105°.
(i) On the diagram below, not drawn to scale, label the known distances travelled and the known angles.

Number 37

(ii) Determine the measure of ∠ABC.
(iii) Calculate, to the nearest km, the distance AC.
(iv) Show that the bearing of A from C, to the nearest degree, is 260°.


(i) The labelled diagram is:

Number 37i

(ii)
Let us indicate more labels to help us with the calculations.

Number 37ii

$ \phi = 44^\circ ...alternate\;\;\angle s\;\;are\;\;equal \\[3ex] 105 + \theta = 180^\circ ...\angle s\;\;on\;\;a\;\;straight\;\;line \\[3ex] \theta = 180 - 105 \\[3ex] \theta = 75^\circ \\[5ex] (ii) \\[3ex] \angle ABC = \phi + \theta ...diagram \\[3ex] \angle ABC = 44 + 75 \\[3ex] \angle ABC = 119^\circ \\[5ex] (iii) \\[3ex] |AC|^2 = |AB|^2 + |BC|^2 - 2 * |AB| * |BC| * \cos \angle ABC...Cosine\;\;Law \\[3ex] |AC|^2 = 52^2 + 72^2 - 2(52)(72)(\cos 119^\circ) \\[3ex] |AC|^2 = 2704 + 5184 - 7488(-0.4848096202) \\[3ex] |AC|^2 = 7888 + 3630.254436 \\[3ex] |AC|^2 = 11518.25444 \\[3ex] |AC| = \sqrt{11518.25444} \\[3ex] |AC| = 107.3231309 \\[3ex] |AC| \approx 107\;km \\[5ex] (iv) \\[3ex] \dfrac{\sin \angle ACB}{|AB|} = \dfrac{\sin \angle ABC}{|AC|}...Sine\;\;Law \\[5ex] \dfrac{\sin \angle ACB}{52} = \dfrac{\sin 119^\circ}{107.3231309} \\[5ex] \sin \angle ACB = \dfrac{52\sin 119^\circ}{107.3231309} \\[5ex] \sin \angle ACB = \dfrac{52(0.8746197071)}{107.3231309} \\[5ex] \sin \angle ACB = 0.423769083 \\[3ex] \angle ACB = \sin^{-1}(0.423769083) \\[3ex] \angle ACB = 25.07277523^\circ \\[3ex] \beta = \theta = 75^\circ ...alternate\;\;\angle s\;\;are\;\;equal \\[3ex] Bearing\;\;of\;\;A\;\;from\;\;C...indicated\;\;by\;\;\color{purple}{purple\;\;color} \\[3ex] = 360 - (\beta + \angle ACB) ...\angle s\;\;at\;\;a\;\;point \\[3ex] = 360 - (75 + 25.07277523) \\[3ex] = 360 - 100.0727752 \\[3ex] = 259.9272248 \\[3ex] \approx 260^\circ $
(38.)


(39.)


(40.)






Top




(41.) The diagram below shows straight roads connecting the towns L, M, N and R.
LR = 18 km, LN = 12 km and MN = 10 km.
Angle RLN = 25° and angle LMN = 88°

Number 41

(i) Calculate angle MLN.
(ii) Calculate the distance NR.
(iii) Determine the bearing of Town R from Town L.


$ (i) \\[3ex] \underline{\triangle LMN} \\[3ex] \dfrac{\sin \angle MLN}{|MN|} = \dfrac{\sin \angle LMN}{|LN|}...Sine\;\;Law \\[5ex] \dfrac{\sin \angle MLN}{10} = \dfrac{\sin 88^\circ}{12} \\[5ex] \sin \angle MLN = \dfrac{10 * \sin 88^\circ}{12} \\[5ex] \sin \angle MLN = \dfrac{10(0.999390827)}{12} \\[5ex] \sin \angle MLN = 0.8328256892 \\[3ex] \angle MLN = \sin^{-1}(0.8328256892) \\[3ex] \angle MLN = 56.39010829 \\[3ex] \angle MLN \approx 56^\circ \\[5ex] (ii) \\[3ex] \underline{\triangle LNR} \\[3ex] |NR|^2 = |LN|^2 + |LR|^2 - 2 * |LN| * |LR| * \cos \angle RLN...Cosine\;\;Law \\[3ex] |NR|^2 = 12^2 + 18^2 - 2(12)(18) * \cos 25^\circ \\[3ex] |NR|^2 = 144 + 324 - 432 * 0.906307787 \\[3ex] |NR|^2 = 468 - 391.524964 \\[3ex] |NR|^2 = 76.475036 \\[3ex] |NR| = \sqrt{76.475036} \\[3ex] |NR| = 8.745000629 \\[3ex] |NR| \approx 9\;km \\[5ex] (iii) \\[3ex] Bearing\;\;of\;\;R\;\;from\;\;L \\[3ex] = 50 + \angle MLN + 25...diagram \\[3ex] = 50 + 56.39010829 + 25 \\[3ex] = 131.3901083 \\[3ex] \approx 131^\circ $
(42.)


(43.)


(44.)


(45.)


(46.)


(47.)


(48.)


(49.)


(50.)


(51.)


(52.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.