Please Read Me.

Mensuration

Welcome to Our Site


I greet you this day,

These are the solutions to the GCSE past questions on the topics in Mensuration.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and if any of these resources were helpful in your passing the Mathematics test of the GCSE, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Formulas

Right Triangle

$ perpendicular\:\:height = height \\[3ex] Area = \dfrac{1}{2} * base * height \\[5ex] height = \dfrac{2 * Area}{base} \\[5ex] base = \dfrac{2 * Area}{height} \\[5ex] hypotenuse^2 = height^2 + base^2...Pythagorean\:\:Theorem \\[3ex] hypotenuse = \sqrt{height^2 + base^2} \\[3ex] height = \sqrt{hypotenuse^2 - base^2} \\[3ex] base = \sqrt{hypotenuse^2 - height^2} \\[3ex] Perimeter = hypotenuse + height + base \\[3ex] Area = \dfrac{1}{2} * height * base * \sin (hypotenuseAngle) \\[5ex] Area = \dfrac{1}{2} * height * hypotenuse * \sin (baseAngle) \\[5ex] Area = \dfrac{1}{2} * base * hypotenuse * \sin (heightAngle) \\[5ex] Semiperimeter = \dfrac{height + base + hypotenuse}{2} \\[5ex] Semiperimeter - height = firstdifference \\[3ex] Semiperimeter - base = seconddifference \\[3ex] Semiperimeter - hypotenuse = thirddifference \\[3ex] Area = \sqrt{Semiperimeter * firstdifference * seconddifference * thirddifference}...Hero's\:\:Formula\:\:or\:\:Heron's\:\:Formula \\[5ex] hypotenuse = {Perimeter^2 - 4 * Area}{2 * Perimeter} \\[5ex] base = \dfrac{(Perimeter - hypotenuse) \pm Math.sqrt((hypotenuse - Perimeter)^2 - 8 * Area)}{2} \\[5ex] height = \dfrac{2 * Area}{base} $


Triangle

$ Perimeter = firstside + secondside + thirdside \\[5ex] Area = \dfrac{1}{2} * firstside * secondside * \sin (thirdAngle) \\[5ex] Area = \dfrac{1}{2} * firstside * thirdside * \sin (secondAngle) \\[5ex] Area = \dfrac{1}{2} * secondside * thirdside * \sin (firstAngle) \\[5ex] Semiperimeter = \dfrac{firstside + secondside + thirdside}{2} \\[5ex] Semiperimeter - firstside = firstdifference \\[3ex] Semiperimeter - secondside = seconddifference \\[3ex] Semiperimeter - thirdside = thirddifference \\[3ex] Area = \sqrt{Semiperimeter * firstdifference * seconddifference * thirddifference}...Hero's\:\:Formula\:\:or\:\:Heron's\:\:Formula \\[5ex] \underline{Cosine\:\:Law} \\[3ex] firstside^2 = secondside^2 + thirdside^2 - 2 * secondside * thirdside * \cos (firstAngle) \\[3ex] secondside^2 = firstside^2 + thirdside^2 - 2 * firstside * thirdside * \cos (secondAngle) \\[3ex] thirdside^2 = firstside^2 + secondside^2 - 2 * firstside * secondside * \cos (thirdAngle) \\[5ex] firstAngle = \cos^{-1} \left(\dfrac{secondside^2 + thirdside^2 - firstside^2}{2 * secondside * thirdside}\right) \\[5ex] secondAngle = \cos^{-1} \left(\dfrac{firstside^2 + thirdside^2 - secondside^2}{2 * firstside * thirdside}\right) \\[5ex] thirdAngle = \cos^{-1} \left(\dfrac{firstside^2 + secondside^2 - thirdside^2}{2 * firstside * secondside}\right) \\[7ex] \underline{\text{Area of a Triangle given the vertices}} \\[3ex] \text{Let the vertices be:} \\[3ex] Vertex\;1:\;\;(x_1, y_1) \\[4ex] Vertex\;2:\;\;(x_2, y_2) \\[4ex] Vertex\;3:\;\;(x_3, y_3) \\[4ex] Area = \dfrac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| $


Square

$ side = length = width = height \\[3ex] Area = side^2 \\[3ex] side = \sqrt{Area} \\[3ex] Perimeter = 4 * side \\[3ex] side = \dfrac{Perimeter}{4} \\[5ex] diagonal = side * \sqrt{2} \\[3ex] side = \dfrac{diagonal * \sqrt{2}}{2} \\[5ex] Area = \dfrac{Perimeter^2}{16} \\[5ex] Perimeter = 4 * \sqrt{Area} \\[3ex] Area = \dfrac{diagonal^2}{2} \\[5ex] diagonal = \sqrt{2 * Area} \\[3ex] Perimeter = 2 * diagonal * \sqrt{2} \\[3ex] diagonal = \dfrac{Perimeter * \sqrt{2}}{4} $


Rectangle

$ Area = length * width \\[3ex] length = \dfrac{Area}{width} \\[5ex] width = \dfrac{Area}{length} \\[5ex] Area = \dfrac{(length * Perimeter) - (2 * length^2)}{2} \\[5ex] Area = \dfrac{(width * Perimeter) - (2 * width^2)}{2} \\[5ex] Perimeter = 2(length + width) \\[3ex] length = \dfrac{Perimeter - 2 * width}{2} \\[5ex] width = \dfrac{Perimeter - 2 * length}{2} \\[5ex] Perimeter = \dfrac{2(length^2 + Area)}{length} \\[5ex] Perimeter = \dfrac{2(width^2 + Area)}{width} \\[5ex] diagonal = \sqrt{length^2 + width^2} \\[4ex] length = \sqrt{diagonal^2 - width^2} \\[4ex] width = \sqrt{diagonal^2 - length^2} \\[4ex] diagonal = \dfrac{\sqrt{length^4 + Area^2}}{length} \\[5ex] diagonal = \dfrac{\sqrt{width^4 + Area^2}}{width} \\[5ex] diagonal = \dfrac{\sqrt{(Perimeter^2) + (5 * length^2) - (4 * Perimeter * length)}}{2} \\[5ex] diagonal = \dfrac{\sqrt{(Perimeter^2) + (5 * width^2) - (4 * Perimeter * width)}}{2} $


Circle

$ Area = A \\[3ex] Circumference = C \\[3ex] Radius = r \\[3ex] Diameter = d \\[3ex] d = 2r \\[3ex] r = \dfrac{d}{2} \\[5ex] A = \pi r^2 \\[3ex] A = \dfrac{\pi d^2}{4} \\[5ex] C = 2\pi r \\[3ex] C = \pi d \\[3ex] r = \dfrac{\sqrt{A\pi}}{\pi} \\[5ex] r = \dfrac{C}{2\pi} \\[5ex] d = \dfrac{2\sqrt{A\pi}}{\pi} \\[5ex] r = \dfrac{C}{\pi} \\[5ex] A = \dfrac{C^2}{4\pi} \\[5ex] C = 2\sqrt{A\pi} $


Cube

6 square faces
12 edges

$ edge = side = length = width = height \\[3ex] Surface\:\:Area = 6 * edge^2 \\[3ex] edge = \sqrt{\dfrac{Surface\:\:Area}{6}} \\[5ex] Volume = edge^3 \\[3ex] edge = \sqrt[3]{Volume} \\[3ex] Volume = \dfrac{edge * Surface\:\: Area}{6} \\[5ex] edge = \dfrac{6 * Volume}{Surface\:\:Area} \\[5ex] Surface\:\:Area = \dfrac{6 * Volume}{edge} \\[5ex] Volume = \dfrac{Surface\:\:Area * \sqrt{6 * Surface\:\:Area}}{36} \\[5ex] edge = \dfrac{diagonal * \sqrt{3}}{3} \\[5ex] diagonal = \sqrt{3} * edge \\[3ex] Surface\:\:Area = 2 * diagonal^2 \\[3ex] diagonal = \dfrac{\sqrt{2 * Surface\:\:Area}}{2} \\[5ex] Volume = \dfrac{diagonal^3 * \sqrt{3}}{9} \\[5ex] diagonal = \sqrt{3} * \sqrt[3]{Volume} $


Cuboid (Right Rectangular Prism)

$ Volume = Length \cdot Width \cdot Height \\[3ex] $


Right Cone

Curved Surface Area = Lateral Surface Area
Height = Perpendicular Height

$ Volume\:\:of\:\:Cone = \dfrac{1}{3} * Volume\:\:of\:\:Cylinder \\[5ex] Lateral\:\:Surface\:\:Area = LSA \\[3ex] Base\:\:Area = BA \\[3ex] Total\:\:Surface\:\:Area = TSA \\[3ex] Volume = V \\[3ex] Diameter = d \\[3ex] Radius = r \\[3ex] Height = h \\[3ex] Slant Height = l \\[3ex] r = \dfrac{d}{2} \\[5ex] d = 2r \\[3ex] l = \sqrt{h^2 + r^2} \\[3ex] l = \dfrac{\sqrt{4h^2 + d^2}}{2} \\[5ex] h = \sqrt{l^2 - r^2} \\[3ex] h = \dfrac{\sqrt{4l^2 - d^2}}{2} \\[5ex] r = \sqrt{l^2 - h^2} \\[3ex] d = 2 * \sqrt{l^2 - h^2} \\[3ex] BA = \pi r^2 \\[3ex] r = \dfrac{\sqrt{BA * \pi}}{\pi} \\[5ex] BA = \dfrac{\pi d^2}{4} \\[5ex] d = \dfrac{2\sqrt{BA * \pi}}{\pi} \\[5ex] LSA = \pi rl \\[3ex] LSA = \dfrac{\pi dl}{2} \\[5ex] l = \dfrac{LSA}{\pi r} \\[5ex] LSA = \pi r\sqrt{h^2 + r^2} \\[3ex] h = \dfrac{\sqrt{LSA^2 - \pi^2 r^4}}{\pi r} \\[5ex] TSA = BA + LSA \\[3ex] TSA = \pi r(r + l) \\[3ex] l = \dfrac{TSA - \pi r^2}{\pi r} \\[5ex] TSA = \dfrac{\pi d(d + 2l)}{4} \\[5ex] l = \dfrac{4 * TSA - \pi d^2}{2\pi d} \\[5ex] r = \dfrac{-\pi l \pm \sqrt{\pi^2 l^2 + 4\pi * TSA}}{2\pi} \\[5ex] TSA = \pi r(r + \sqrt{h^2 + r^2}) \\[3ex] h = \dfrac{\sqrt{TSA(TSA - 2\pi r^2)}}{\pi r} \\[5ex] V = \dfrac{BA * h}{3} \\[5ex] V = \dfrac{\pi r^2h}{3} \\[5ex] V = \dfrac{\pi hd^2}{12} \\[5ex] V = \dfrac{\pi h(l^2 - h^2)}{3} \\[5ex] h = \dfrac{3V}{\pi r^2} \\[5ex] r = \dfrac{\sqrt{3V\pi h}}{\pi h} $


Right Cylinder

Curved Surface Area = Lateral Surface Area
Height = Perpendicular Height

$ Volume\:\:of\:\:Cylinder = 3 * Volume\:\:of\:\:Cone \\[3ex] Lateral\:\:Surface\:\:Area = LSA \\[3ex] Base\:\:Area = BA \\[3ex] Total\:\:Surface\:\:Area = TSA \\[3ex] Volume = V \\[3ex] Diameter = d \\[3ex] Radius = r \\[3ex] Height = h \\[3ex] r = \dfrac{d}{2} \\[5ex] d = 2r \\[3ex] LSA = 2\pi rh \\[3ex] r = \dfrac{LSA}{2\pi h} \\[5ex] h = \dfrac{LSA}{2\pi r} \\[5ex] LSA = \pi dh \\[3ex] h = \dfrac{LSA}{\pi d} \\[5ex] d = \dfrac{LSA}{\pi h} \\[5ex] BA = \pi r^2 \\[3ex] r = \dfrac{\sqrt{\pi BA}}{\pi} \\[5ex] r = \dfrac{1}{\pi} * \sqrt{\dfrac{\pi(TSA - 2 * LSA)}{2}} \\[5ex] BA = \dfrac{\pi d^2}{4} \\[5ex] d = \dfrac{2\sqrt{\pi BA}}{\pi} \\[5ex] d = \dfrac{\sqrt{2\pi (TSA - LSA)}}{\pi} \\[5ex] TSA = 2\pi r(r + h) \\[3ex] h = \dfrac{TSA - 2\pi r^2}{2\pi r} \\[5ex] r = \dfrac{-\pi h \pm \sqrt{\pi(\pi h^2 + 2 * TSA)}}{2\pi} \\[5ex] TSA = 2BA + LSA \\[3ex] BA = \dfrac{TSA - LSA}{2} \\[5ex] LSA = TSA - 2BA \\[3ex] TSA = \pi d\left(\dfrac{d + 2h}{2}\right) \\[5ex] h = \dfrac{2 * TSA - \pi d^2}{2\pi d} \\[5ex] d = \dfrac{-\pi h \pm \sqrt{\pi(h^2 + 2 * TSA)}}{\pi} \\[5ex] h = \dfrac{LSA * \sqrt{\pi * BA}}{\pi * BA} \\[5ex] h = \dfrac{LSA}{\sqrt{2\pi(TSA - LSA)}} \\[5ex] BA = \dfrac{LSA^2}{\pi h^2} \\[5ex] BA = \dfrac{(4 * TSA + \pi h^2) \pm h\sqrt{\pi(\pi h^2 - 8 * TSA)}}{8} \\[5ex] LSA = h\sqrt{BA * \pi} \\[3ex] LSA = \dfrac{-\pi h^2 \pm h\sqrt{\pi(\pi h^2 + 8 * TSA)}}{4} \\[5ex] TSA = 2 * BA \pm h\sqrt{\pi * BA} \\[3ex] TSA = \dfrac{LSA(2 * LSA + \pi h^2)}{\pi h^2} \\[5ex] V = \pi r^2h \\[3ex] r = \dfrac{2V}{LSA} \\[5ex] d = \dfrac{4V}{LSA} \\[5ex] r = \dfrac{\sqrt{Vh\pi}}{h\pi} \\[5ex] V = BA * h \\[3ex] BA = \dfrac{V}{h} \\[5ex] h = \dfrac{V}{BA} \\[5ex] h = \dfrac{V}{\pi r^2} \\[5ex] h = \dfrac{4V}{\pi d^2} \\[5ex] V = \dfrac{\pi d^2h}{4} \\[5ex] d = \dfrac{\sqrt{Vh\pi}}2{h\pi} \\[5ex] V = \dfrac{LSA^2}{h\pi} \\[5ex] LSA = \sqrt{Vh\pi} \\[3ex] h = \dfrac{LSA^2}{4V\pi} \\[5ex] V = \dfrac{(h^3\pi + 4 * TSA * h) \pm h^2\sqrt{\pi(h^2\pi + 8 * TSA)}}{8} \\[5ex] TSA = \dfrac{2V + h\sqrt{Vh\pi}}{h} \\[5ex] TSA = \dfrac{2V + 2\pi rh^2}{h} \\[5ex] r = \dfrac{TSA * h - 2V}{2\pi h^2} \\[5ex] d = \dfrac{TSA * h - 2V}{\pi h^2} \\[5ex] h = \dfrac{TSA \pm \sqrt{TSA^2 - 16\pi rV}}{4\pi r} $


Trapezoid

Trapezoid's Midpoint Segment Theorem states that the line segment connecting the nonparallel sides of a trapezoid is parallel to the bases, and it's length is the average of the lengths of the bases.

$ Midline = \dfrac{short\;\;base + long\;base}{2} $

(1.) Write down the special name of each of the following shapes.

Number 1


(a.) is a cylinder
(b.) is a pentagon
(c.) is a parallelogram
(2.)


(3.)


(4.)

(5.)


(6.)


(7.)


(8.)


(9.)


(10.)

(11.)


(12.)


(13.) The cube shown below has a volume of 10648cm³.

Number 13

Calculate the length of the internal diagonal AB.


$ diagonal = \sqrt{3} * \sqrt[3]{Volume} \\[3ex] diagonal = \sqrt{3} * \sqrt[3]{10648} \\[3ex] = \sqrt{3} * 22 \\[3ex] = 22\sqrt{3}\;cm $
(14.)


(15.)


(16.)


(17.)

(18.)


(19.)


(20.)






Top




(21.)

(22.)


(23.)

(24.)


(25.)

(26.)


(27.)

(28.)


(29.)

(30.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.