Non-Calculator Paper: Track 2: Year 11
Welcome to Our Site
I greet you this day,
These are the solutions to the Mathematics past questions for Non-Calculator Paper: Track 2: Year 11.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified
of upcoming livestreams.
You are welcome to ask questions during the video livestreams.
If you find these resources valuable and if any of these resources were helpful in your passing the
Mathematics tests/exams, please consider making a donation:
Cash App: $ ExamsSuccess or
cash.app/ExamsSuccess
PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess
Google charges me for the hosting of this website and my other
educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well.
As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.
Comments, ideas, areas of improvement, questions, and constructive
criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.
(1.) Estimate the value of: $96 \div \sqrt{25.4}$
Show/Hide Answer
$
25.4 \approx 25 \\[3ex]
\sqrt{25} = 5 \\[3ex]
96 \div 5 \\[3ex]
= 19 + \dfrac{1}{5} \\[5ex]
= 19 + 0.2 \\[3ex]
= 19.2 \\[3ex]
\implies \\[3ex]
96 \div \sqrt{25.4} \approx 19.2
$
(2.) The area of France is about 552 thousand square kilometres.
Write this number in standard form.
Show/Hide Answer
$
552000 \;km^2 \\[4ex]
= 552 * 1000 \\[3ex]
= 5.52 * 100 * 1000 \\[3ex]
= 5.52 * 10^5\;km^2
$
(3.) Circle the value of the digit 6 in the number 12.368
$
\dfrac{6}{1000} \hspace{5em} 6 \hspace{5em} \dfrac{6}{100} \hspace{5em} \dfrac{6}{10} \\[5ex]
$
Show/Hide Answer
$
12.368 \\[3ex]
6 \rightarrow 6 \;hundredth \\[3ex]
= \dfrac{6}{100}
$
(4.) Solve: $\dfrac{x}{7} - 6 = 3$
Show/Hide Answer
$
\dfrac{x}{7} - 6 = 3 \\[5ex]
\dfrac{x}{7} = 3 + 6 \\[5ex]
\dfrac{x}{7} = 9 \\[5ex]
x = 7(9) \\[3ex]
x = 63 \\[3ex]
$
Check
$x = 63$
LHS
RHS
$
\dfrac{x}{7} - 6 \\[5ex]
\dfrac{63}{7} - 6 \\[5ex]
9 - 6 \\[3ex]
3
$
$3$
(5.)
Use the graph above to tick (✓) the
incorrect statement:
The bear population has increased over the past five years.
The lynx population rose sharply, and the lynx is frequently sighted in
the Rocky Mountains.
The moose population remained relatively stable during the past five
years.
Show/Hide Answer
From the graph, we notice that the population of lynx decreased exponentially (not rose sharply) from 2019
to 2024
Hence, the incorrect statement is the second one.
The second box should be ticked.
(6.) Calculate the simple interest earned on €5000 invested for 4 years at a rate of 3.5% per annum.
Show/Hide Answer
$
P = €5000 \\[3ex]
r = 3.5\% = \dfrac{3.5}{100} = \dfrac{35}{10 * 100} = \dfrac{35}{1000} \\[5ex]
t = 4\;years \\[5ex]
SI = P * r * t \\[3ex]
= 5000 * \dfrac{35}{1000} * 4 \\[5ex]
= 5 * 35 * 4 \\[3ex]
= 5 * 4 * 35 \\[3ex]
= 20 * 35 \\[3ex]
= 2 * 10 * 35 \\[3ex]
= 2 * 35 * 10 \\[3ex]
= 70 * 10 \\[3ex]
= €700
$
(7.) Express 750 as a product of its prime factors.
Show/Hide Answer
$
\begin{array}{c}
& & 750 \\
& \swarrow & & \searrow \\
\large{\bigcirc} \hspace{-5.5mm} \small{2} & & & & 375 \\
& & & \swarrow & & \searrow \\
& & \large{\bigcirc} \hspace{-5.5mm} \small{3} & & & & 125 \\
& & & & & \swarrow & & \searrow \\
& & & & \large{\bigcirc} \hspace{-5.5mm} \small{5} & & & & 25 \\
& & & & & & & \swarrow & & \searrow \\
& & & & & & \large{\bigcirc} \hspace{-5.5mm} \small{5} & & & & \large{\bigcirc} \hspace{-5.5mm} \small{5} \\
\end{array}
\\
750 = 2 * 3 * 5 * 5 * 5
$
(8.) The function
f is defined as $f(x) = x^2 - 6$.
Work out the value of
f (7)
Show/Hide Answer
$
f(x) = x^2 - 6 \\[3ex]
f(7) = 7^2 - 6 \\[4ex]
= 49 - 6 \\[3ex]
= 43
$
(9.) Work out the value of 𝑥.
Show/Hide Answer
$
15^2 = 9^2 + x^2 ...Pythagorean\;\;Theorem \\[4ex]
225 = 81 + x^2 \\[4ex]
x^2 + 81 = 225 \\[4ex]
x^2 = 225 - 81 \\[4ex]
x^2 = 144 \\[4ex]
x = \sqrt{144} \\[3ex]
x = 12\;cm
$
(10.) The volume of a cube is 125 000 cm³.
Work out the length of one side of the cube.
Show/Hide Answer
$
\text{Side Length of the cube} = L^3 \\[4ex]
Volume = L^3 = 125000\;cm^3 \\[4ex]
Volume = 125000\;cm^3 \\[4ex]
\implies \\[3ex]
L^3 = 125000 \\[4ex]
L = \sqrt[3]{125000} \\[3ex]
L = 50\;cm
$
(11.) This is a circle of radius 14 cm.
Work out the area of the shaded part.
(Take π as $\dfrac{22}{7}$)
Show/Hide Answer
$
radius,\;r = 14\;cm \\[3ex]
Area,\;A = \pi r^2 \\[4ex]
= \dfrac{22}{7} * 14 * 14 \\[5ex]
= 22 * 2 * 14 \\[5ex]
\text{Area of shaded part} = \dfrac{3}{4} * A \\[5ex]
= \dfrac{3}{4} * 22 * 2 * 14 \\[5ex]
= 3 * 22 * 7 \\[3ex]
= 66 * 7 \\[3ex]
= 462\;cm^2
$
(12.) Work out, giving your answer in standard form:
$
\left(5 * 10^4\right) \div \left(2 * 10^{-2}\right)
$
Show/Hide Answer
$
\left(5 * 10^4\right) \div \left(2 * 10^{-2}\right) \\[4ex]
\dfrac{5 * 10^4}{2 * 10^{-2}} \\[6ex]
\dfrac{5}{2} * \dfrac{10^4}{10^{-2}} \\[6ex]
2.5 * 10^{4 - (-2)} \\[4ex]
2.5 * 10^{4 + 2} \\[4ex]
2.5 * 10^6
$
(13.) Expand: $x(2x^2 + 5)$
Show/Hide Answer
$
x(2x^2 + 5) \\[4ex]
2x^3 + 5x
$
(14.) Work out: $\sqrt{1\dfrac{11}{25}}$
Show/Hide Answer
$
\sqrt{1\dfrac{11}{25}} \\[6ex]
\sqrt{\dfrac{36}{25}} \\[6ex]
\dfrac{\sqrt{36}}{\sqrt{25}} \\[6ex]
\dfrac{6}{5} \\[5ex]
1\dfrac{1}{5}
$
(15.)
Use the grid above to solve the simultaneous equations: $y = 2x + 4$ and $y = 6$
Show/Hide Answer
$
y = 2x + 4...eqn.(1) \\[3ex]
y = 6 ...eqn.(2) \\[3ex]
y = y \implies eqn.(1) = eqn.(2) \\[3ex]
2x + 4 = 6 \\[3ex]
2x = 6 - 4 \\[3ex]
2x = 2 \\[3ex]
x = \dfrac{2}{2} \\[5ex]
x = 1 \\[3ex]
\therefore x = 1;\;\;y = 6 \\[5ex]
\underline{Check} \\[3ex]
2x + 4 \\[3ex]
2(1) + 4 \\[3ex]
2 + 4 \\[3ex]
6
$
(16.) One euro (€) is equivalent to 1.63 Australian Dollars (
$ )
How many Australian Dollars (
$ ) are obtained for €3000?
Show/Hide Answer
$
€1 = 1.63\;A\$ \\[3ex]
€3000 = ? \\[5ex]
1 * 3000 = 3000 \\[3ex]
Similarly: \\[3ex]
1.63 * 3000 \\[3ex]
1.63 * 3 * 1000 \\[3ex]
1.63 * 1000 * 3 \\[3ex]
1630 * 3 \\[3ex]
4890\;A\$
$
(17.) A flight from Malta to Serbia takes 1 hour 55 minutes.
An aeroplane leaves Malta at 8:35 am.
At what time does it land in Serbia?
Show/Hide Answer
$
1\;hr \;\;\;55\;min = 2\;hrs - 5\;min \\[3ex]
\implies \\[3ex]
\begin{array}{c@{}c@{}c@{}c}
& 8 & : & 35 \, \text{AM} \\
+ & 2 & : &\;\; 00 \, \text{hours} \\
\hline
& 10 & : & 35 \, \text{AM} \\
- & & : & \,\;\;\;\;\;\; 05 \, \text{minutes} \\
\hline
& 10 & : & 30 \, \text{AM} \\
\end{array}
$
(18.) The
n th term of a sequence is 7 − 3
n
Find the value of the 25th term.
Show/Hide Answer
Let the n th term = T (n )
$
T(n) = 7 - 3n \\[3ex]
T(25) = 7 - 3(25) \\[3ex]
= 7 - 75 \\[3ex]
= -68
$
(19.) Simplify: $\dfrac{21x^5}{7x^2}$
Show/Hide Answer
$
\dfrac{21x^5}{7x^2} \\[6ex]
= \dfrac{21}{7} * \dfrac{x^5}{x^2} \\[6ex]
3 * x^{5 - 2} \\[4ex]
= 3x^3
$
(20.) Work out the value of: 7.5 × (8.8 + 1.2) ÷ 15
Show/Hide Answer
$
7.5 * (8.8 + 1.2) \div 15 \\[3ex]
7.5 * 10 \div 15 \\[3ex]
75 \div 15 \\[3ex]
5
$