Please Read Me.

Trigonometry

Welcome to Our Site


I greet you this day,
These are the solutions to Mathematics questions on the topics in Trigonometry.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
If you find these resources valuable and helpful in your learning, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.


Please NOTE: For applicable questions (questions that require the angle in degrees), if you intend to use the TI-84 Family:
Please make sure you set the MODE to DEGREE.
It is RADIAN by default. So, it needs to be set to DEGREE.

Calculator-Mode-Degree

Coterminal Angles

Coterminal angles are angles with the same initial side and the same terminal side.
The concept of coterminal angles helps us to find the equivalent positive angle of a negative angle.
Because an angle in standard position is measured counterclockwise, adding 360° to it accounts for a full revolution, keeping the direction intact.
Hence for any angle say θ, the coterminal angles are θ + 360k where k is any integer.

Trigonometric Functions

Right Triangle Trigonometry for any angle, say $\theta$
Pneumonic for it is: SOHCAHTOA and cosecHOsecHAcotanAO

$ (1.)\;\; \sin \theta = \dfrac{opp}{hyp} \\[7ex] (2.)\;\; \cos \theta = \dfrac{adj}{hyp} \\[7ex] (3.)\;\; \tan \theta = \dfrac{\sin \theta}{\cos \theta} \\[5ex] = \sin \theta \div \cos \theta \\[3ex] = \dfrac{opp}{hyp} \div \dfrac{adj}{hyp} \\[5ex] = \dfrac{opp}{hyp} * \dfrac{hyp}{adj} \\[5ex] \therefore \tan \theta = \dfrac{opp}{adj} \\[7ex] (4.)\;\; \csc \theta = \dfrac{1}{\sin \theta} \\[5ex] = 1 \div \sin \theta \\[3ex] = 1 \div \dfrac{opp}{hyp} \\[5ex] \therefore \csc \theta = \dfrac{hyp}{opp} \\[7ex] (5.)\;\; \sec \theta = \dfrac{1}{\cos \theta} \\[5ex] = 1 \div \cos \theta \\[3ex] = 1 \div \dfrac{adj}{hyp} \\[5ex] \therefore \sec \theta = \dfrac{hyp}{adj} \\[7ex] (6.)\;\; \cot \theta = \dfrac{1}{\tan \theta} = \dfrac{\cos \theta}{\sin \theta} \\[5ex] = \cos \theta \div \sin \theta \\[3ex] = \dfrac{adj}{hyp} \div \dfrac{opp}{hyp} \\[5ex] = \dfrac{adj}{hyp} * \dfrac{hyp}{opp} \\[5ex] \therefore \cot \theta = \dfrac{adj}{opp} $

Summary: The Unit Circle

$\theta$ in DEG $\theta$ in RAD $\sin \theta$ $\cos \theta$ $\tan \theta$ $\csc \theta$ $\sec \theta$ $\cot \theta$
$0$ $0$ $0$ $1$ $0$ $undefined$ $1$ $undefined$
$30$ $\dfrac{\pi}{6}$ $\dfrac{1}{2}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{\sqrt{3}}{3}$ $2$ $\dfrac{2\sqrt{3}}{3}$ $\sqrt{3}$
$45$ $\dfrac{\pi}{4}$ $\dfrac{\sqrt{2}}{2}$ $\dfrac{\sqrt{2}}{2}$ $1$ $\sqrt{2}$ $\sqrt{2}$ $1$
$60$ $\dfrac{\pi}{3}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{2}$ $\sqrt{3}$ $\dfrac{2\sqrt{3}}{3}$ $2$ $\dfrac{\sqrt{3}}{3}$
$90$ $\dfrac{\pi}{2}$ $1$ $0$ $undefined$ $1$ $undefined$ $0$
$120$ $\dfrac{2\pi}{3}$ $\dfrac{\sqrt{3}}{2}$ $-\dfrac{1}{2}$ $-\sqrt{3}$ $\dfrac{2\sqrt{3}}{3}$ $-2$ $-\dfrac{\sqrt{3}}{3}$
$135$ $\dfrac{3\pi}{4}$ $\dfrac{\sqrt{2}}{2}$ $-\dfrac{\sqrt{2}}{2}$ $-1$ $\sqrt{2}$ $-\sqrt{2}$ $-1$
$150$ $\dfrac{5\pi}{6}$ $\dfrac{1}{2}$ $-\dfrac{\sqrt{3}}{2}$ $-\dfrac{\sqrt{3}}{3}$ $2$ $-\dfrac{2\sqrt{3}}{3}$ $-\sqrt{3}$
$180$ $\pi$ $0$ $-1$ $0$ $undefined$ $-1$ $undefined$
$210$ $\dfrac{7\pi}{6}$ $-\dfrac{1}{2}$ $-\dfrac{\sqrt{3}}{2}$ $\dfrac{\sqrt{3}}{3}$ $-2$ $-\dfrac{2\sqrt{3}}{3}$ $\sqrt{3}$
$225$ $\dfrac{5\pi}{4}$ $-\dfrac{\sqrt{2}}{2}$ $-\dfrac{\sqrt{2}}{2}$ $1$ $-\sqrt{2}$ $-\sqrt{2}$ $1$
$240$ $\dfrac{4\pi}{3}$ $-\dfrac{\sqrt{3}}{2}$ $-\dfrac{1}{2}$ $\sqrt{3}$ $-\dfrac{2\sqrt{3}}{3}$ $-2$ $\dfrac{\sqrt{3}}{3}$
$270$ $\dfrac{3\pi}{2}$ $-1$ $0$ $undefined$ $-1$ $undefined$ $0$
$315$ $\dfrac{7\pi}{4}$ $-\dfrac{\sqrt{2}}{2}$ $\dfrac{\sqrt{2}}{2}$ $-1$ $-\sqrt{2}$ $\sqrt{2}$ $-1$
$300$ $\dfrac{5\pi}{3}$ $-\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{2}$ $-\sqrt{3}$ $-\dfrac{2\sqrt{3}}{3}$ $2$ $-\dfrac{\sqrt{3}}{3}$
$330$ $\dfrac{11\pi}{6}$ $-\dfrac{1}{2}$ $\dfrac{\sqrt{3}}{2}$ $-\dfrac{\sqrt{3}}{3}$ $-2$ $\dfrac{2\sqrt{3}}{3}$ $-\sqrt{3}$
$360$ $2\pi$ $0$ $1$ $0$ $undefined$ $1$ $undefined$

Trigonometric Identities

\begin{array}{c | c} II & I \\ \hline III & IV \end{array} = \begin{array}{c | c} S & A \\ \hline T & C \end{array} = \begin{array}{c | c} Sine\:\: is\:\: positive & All\:\: are\:\: positive \\ \hline Tangent\:\: is\:\: positive & Cosine\:\: is\:\: positive \end{array}



The pneumonic to remember it:
First Quadrant to Fourth Quadrant (clockwise direction): A-C-T-S (ACTS of the Apostles)

First Quadrant to Fourth Quadrant (counter-clockwise direction): A-S-T-C: ADD - SUGAR - TO - COFFEE

Fourth Quadrant to Third Quadrant (counter-clockwise direction): C-A-S-T (Simon Peter, CAST your net into the sea.)

Second Quadrant to Third Quadrant (clockwise direction): S-A-C-T

Cofunction Identities (Identities of Complements)
First Quadrant Identities
First Quadrant: All (sine, cosine, tangent) are positive
This implies that cosecant, secant, and cotangent are also positive.

Given: two angles say: $\alpha$ and $\beta$;
If $\alpha$ and $\beta$ are complementary, then the:
Sine function and the Cosine functions are cofunctions

$ \sin \alpha = \cos \beta \\[3ex] \cos \alpha = \sin \beta \\[3ex] $ Tangent function and the Cotangent functions are cofunctions

$ \tan \alpha = \cot \beta \\[3ex] \cot \alpha = \tan \beta \\[3ex] $ Secant function and the Cosecant functions are cofunctions

$ \sec \alpha = \csc \beta \\[3ex] \csc \alpha = \sec \beta \\[3ex] $ Given: one angle say: $\theta$;
First Quadrant Identities or Cofunction Identities or Identities of Complements

$0 \lt \theta \lt 90 ...Angle\:\: in\:\: Degrees \\[3ex]$ Reference Angle = $\theta$ ... Angle in Degrees

$0 \lt \theta \lt \dfrac{\pi}{2} ...Angle\:\: in\:\: Radians \\[5ex]$ Reference Angle = $\theta$ ... Angle in Radians

First Quadrant: sine, cosine, tangent are positive
This implies that cosecant, secant, and cotangent are also positive

Complement of $\theta$ = $90 - \theta$ where $\theta$ is in degrees:

Complement of $\theta$ = $\dfrac{\pi}{2} - \theta$ where $\theta$ is in radians:

$ (1.)\:\: \sin \theta = \cos (90 - \theta) \\[3ex] (2.)\:\: \sin \theta = \cos \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (3.)\:\: \cos \theta = \sin (90 - \theta) \\[3ex] (4.)\:\: \cos \theta = \sin \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (5.)\:\: \tan \theta = \cot (90 - \theta) \\[3ex] (6.)\:\: \tan \theta = \cot \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (7.)\:\: \cot \theta = \tan (90 - \theta) \\[3ex] (8.)\:\: \cot \theta = \tan \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (9.)\:\: \sec \theta = \csc (90 - \theta) \\[3ex] (10.)\:\: \sec \theta = \csc \left(\dfrac{\pi}{2} - \theta \right) \\[5ex] (11.)\:\: \csc \theta = \sec (90 - \theta) \\[3ex] (12.)\:\: \csc \theta = \sec \left(\dfrac{\pi}{2} - \theta \right) \\[7ex] $ Second Quadrant Identities or Identities of Supplements

$90 \lt \theta \lt 180$ ... Angle in Degrees
Reference Angle = $180 - \theta$ ... Angle in Degrees
$\dfrac{\pi}{2} \lt \theta \lt \pi$ ... Angle in Radians
Reference Angle = $\pi - \theta$ ... Angle in Radians
Second Quadrant: sine is positive
This implies that cosecant is also positive
Symmetric across the y-axis

Given: one angle say: $\theta$;
Supplement of $\theta$ = $180 - \theta$ where $\theta$ is in degrees:
Supplement of $\theta$ = $\pi - \theta$ where $\theta$ is in radians:

$ (1.)\;\; \sin \theta = \sin (180 - \theta) \\[3ex] (2.)\;\; \sin (180 - \theta) = \sin \theta \\[3ex] (3.)\;\; \sin \theta = \sin (\pi - \theta) \\[3ex] (4.)\;\; \sin (\pi - \theta) = \sin \theta \\[3ex] (5.)\;\; \cos \theta = -\cos (180 - \theta) \\[3ex] (6.)\;\; \cos (180 - \theta) = -\cos \theta \\[3ex] (7.)\;\; \cos \theta = -\cos (\pi - \theta) \\[3ex] (8.)\;\; \cos (\pi - \theta) = -\cos \theta \\[3ex] (9.)\;\; \tan \theta = -\tan (180 - \theta) \\[3ex] (10.)\;\; \tan (180 - \theta) = -\tan \theta \\[3ex] (11.)\;\; \tan \theta = -\tan (\pi - \theta) \\[3ex] (12.)\;\; \tan (\pi - \theta) = -\tan \theta \\[5ex] $ Third Quadrant Identities
$180 \lt \theta \lt 270$ ... Angle in Degrees
Reference Angle = $\theta - 180$ ... Angle in Degrees
$\pi \lt \theta \lt \dfrac{3\pi}{2}$ ... Angle in Radians
Reference Angle = $\theta - \pi$ ... Angle in Radians
Third Quadrant: tangent is positive
This implies that cotangent is also positive
Symmetric across the origin

Given: one angle say: $\theta$;

$ (1.)\;\; \sin \theta = -\sin (\theta - 180) \\[3ex] (2.)\;\; \sin (\theta - 180) = -\sin \theta \\[3ex] (3.)\;\; \sin \theta = -\sin (\theta - \pi) \\[3ex] (4.)\;\; \sin (\theta - \pi) = -\sin \theta \\[3ex] (5.)\;\; \cos \theta = -\cos (\theta - 180) \\[3ex] (6.)\;\; \cos (\theta - 180) = -\cos \theta \\[3ex] (7.)\;\; \cos \theta = -\cos (\theta - \pi) \\[3ex] (8.)\;\; \cos (\theta - \pi) = -\cos \theta \\[3ex] (9.)\;\; \tan \theta = \tan (\theta - 180) \\[3ex] (10.)\;\; \tan (\theta - 180) = \tan \theta \\[3ex] (11.)\;\; \tan \theta = \tan (\theta - \pi) \\[3ex] (12.)\;\; \tan (\theta - \pi) = \tan \theta \\[5ex] $ But if $\theta \lt 180$, use $\theta + 180$

Fourth Quadrant Identities
$270 \lt \theta \lt 360$ ... Angle in Degrees
Reference Angle = $360 - \theta$ ... Angle in Degrees
$\dfrac{3\pi}{2} \lt \theta \lt 2\pi$ ... Angle in Radians
Reference Angle = $2\pi - \theta$ ... Angle in Radians
Fourth Quadrant: cosine is positive
This implies that secant is also positive
Symmetric across the x-axis

Given: one angle say: $\theta$;

$ (1.)\;\; \sin \theta = -\sin (360 - \theta) \\[3ex] (2.)\;\; \sin (360 - \theta) = -\sin \theta \\[3ex] (3.)\;\; \sin \theta = -\sin (2\pi - \theta) \\[3ex] (4.)\;\; \sin (2\pi - \theta) = -\sin \theta \\[3ex] (5.)\;\; \cos \theta = \cos (360 - \theta) \\[3ex] (6.)\;\; \cos (360 - \theta) = \cos \theta \\[3ex] (7.)\;\; \cos \theta = \cos (2\pi - \theta) \\[3ex] (8.)\;\; \cos (2\pi - \theta) = \cos \theta \\[3ex] (9.)\;\; \tan \theta = -\tan (360 - \theta) \\[3ex] (10.)\;\; \tan (360 - \theta) = -\tan \theta \\[3ex] (11.)\;\; \tan \theta = -\tan (2\pi - \theta) \\[3ex] (12.)\;\; \tan (2\pi - \theta) = -\tan \theta \\[3ex] $ Reciprocal Identities

$ (1.)\;\; \csc \theta = \dfrac{1}{\sin \theta} \\[3ex] (2.)\;\; \sec \theta = \dfrac{1}{\cos \theta} \\[3ex] (3.)\;\; \cot \theta = \dfrac{1}{\tan \theta} \\[3ex] $ From Reciprocal Identities

$ (1.)\;\; \sin \theta = \dfrac{1}{\csc \theta} \\[3ex] (2.)\;\; \cos \theta = \dfrac{1}{\sec \theta} \\[3ex] (3.)\;\; \tan \theta = \dfrac{1}{\cot \theta} \\[5ex] $ Quotient Identities
$ (1.)\;\; \tan \theta = \dfrac{\sin \theta}{\cos \theta} \\[3ex] (2.)\;\; \cot \theta = \dfrac{\cos \theta}{\sin \theta} \\[3ex] $ As you can see, $\cot \theta$ has two formulas

$ \cot \theta = \dfrac{1}{\tan \theta} \\[5ex] \cot \theta = \dfrac{\cos \theta}{\sin \theta} \\[5ex] $ Sometimes, we shall use the first one. Sometimes, we shall use the second one.
We have to use the formula that will not give us an undefined value (where the denominator is zero)

Even Identities
Recall: a function, say $f(x)$ is even if $f(-x) = f(x)$
In Trigonometry, the cosine function and the secant function are even functions.

$ (1.)\;\; \cos (-\theta) = \cos \theta \\[3ex] (2.)\;\; \sec (-\theta) = \sec \theta \\[5ex] $ Odd Identities
Recall: a function, say $f(x)$ is odd if $f(-x) = -f(x)$
In Trigonometry, the sine function, the cosecant function, the tangent function, and the cotangent function are odd functions.

$ (1.)\;\; \sin (-\theta) = -\sin \theta \\[3ex] (2.)\;\; \csc (-\theta) = -\csc \theta \\[3ex] (3.)\;\; \tan (-\theta) = -\tan \theta \\[3ex] (4.)\;\; \cot (-\theta) = -\cot \theta \\[5ex] $ Pythagorean Identities

$ (1.)\;\; \sin^2 \theta + \cos^2 \theta = 1 \\[3ex] (2.)\;\; \tan^2 \theta + 1 = \sec^2 \theta \\[3ex] (3.)\;\; \cot^2 \theta + 1 = \csc^2 \theta \\[3ex] $ From Pythagorean Identities

$ (1.)\;\; \sin \theta = \pm \sqrt{1 - \cos^2 \theta} \\[3ex] (2.)\;\; \cos \theta = \pm \sqrt{1 - \sin^2 \theta} \\[3ex] (3.)\;\; \tan \theta = \pm \sqrt{\sec^2 \theta - 1} \\[3ex] (4.)\;\; \sec \theta = \pm \sqrt{\tan^2 \theta + 1} \\[3ex] (5.)\;\; \cot \theta = \pm \sqrt{\csc^2 \theta - 1} \\[3ex] (6.)\;\; \csc \theta = \pm \sqrt{\cot^2 \theta + 1} $

Trigonometric Formulas

Sum and Difference Formulas

$ (1.)\;\; \sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\[3ex] (2.)\;\; \cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\[3ex] (3.)\;\; \tan (\alpha \pm \beta) = \dfrac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \\[5ex] $ Half-Angle Formulas

$ (1.)\;\; \sin \dfrac{\theta}{2} = \pm \sqrt{\dfrac{1 - \cos \theta}{2}} \\[5ex] (2.)\;\; \cos {\theta \over 2} = \pm \sqrt{\dfrac{1 + \cos \theta}{2}} \\[5ex] (3.)\;\; \tan {\theta \over 2} = \pm \sqrt{\dfrac{1 - \cos \theta}{1 + \cos \theta}} \\[5ex] (4.)\;\; \tan {\theta \over 2} = \dfrac{\sin \theta}{1 + \cos \theta} \\[5ex] (5.)\;\; \tan {\theta \over 2} = \dfrac{1 - \cos \theta}{\sin \theta} \\[5ex] $ Formulas from Half-Angle Formulas

$ (1.)\;\; \sin^2 \dfrac{\theta}{2} = \dfrac{1 - \cos \theta}{2} \\[5ex] (2.)\;\; \cos^2 \dfrac{\theta}{2} = \dfrac{1 + \cos \theta}{2} \\[5ex] (3.)\;\; \tan^2 \dfrac{\theta}{2} = \dfrac{1 - \cos \theta}{1 + \cos \theta} \\[7ex] $ Double-Angle Formulas

$ (1.)\;\; \sin (2\theta) = 2 \sin \theta \cos \theta \\[3ex] (2.)\;\; \cos (2\theta) = \cos^2 \theta - \sin^2 \theta \\[3ex] (3.)\;\; \cos (2\theta) = 1 - 2\sin^2 \theta \\[3ex] (4.)\;\; \cos (2\theta) = 2\cos^2 \theta - 1 \\[3ex] (5.)\;\; \tan (2\theta) = \dfrac{2\tan \theta}{1 - \tan^2 \theta} \\[5ex] $ Formulas from Double-Angle Formulas

$ (1.)\;\; \sin^2 \theta = \dfrac{1 - \cos(2\theta)}{2} \\[5ex] (2.)\;\; \cos^2 \theta = \dfrac{1 + \cos(2\theta)}{2} \\[5ex] (3.)\;\; \tan^2 \theta = \dfrac{1 - \cos(2\theta)}{1 + \cos(2\theta)} \\[7ex] $ Triple-Angle Formulas

$ (1.)\;\; \sin (3\theta) = 3 \sin \theta - 4\sin^3 \theta \\[3ex] (2.)\;\; \cos (3\theta) = 4 \cos^3 \theta - 3 \cos \theta \\[3ex] (3.)\;\; \tan (3\theta) = \dfrac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} \\[7ex] $ Sum-to-Product Formulas

$ (1.)\;\; \sin \alpha + \sin \beta = 2 \sin \left(\dfrac{\alpha + \beta}{2}\right) \cos \left(\dfrac{\alpha - \beta}{2}\right) \\[5ex] (2.)\;\; \sin \alpha - \sin \beta = 2 \sin \left(\dfrac{\alpha - \beta}{2}\right) \cos \left(\dfrac{\alpha + \beta}{2}\right) \\[5ex] (3.)\;\; \cos \alpha + \cos \beta = 2 \cos \left(\dfrac{\alpha + \beta}{2}\right) \cos \left(\dfrac{\alpha - \beta}{2}\right) \\[5ex] (4.)\;\; \cos \alpha - \cos \beta = -2 \sin \left(\dfrac{\alpha + \beta}{2}\right) \sin \left(\dfrac{\alpha - \beta}{2}\right) \\[5ex] $ Ask students to write the compact form / shortened form of the first two Sum-to-Product Formulas.

Sum-to-Product Formulas (Compact Form of the First Two Formulas)

$ (1.)\;\; \sin \alpha \pm \sin \beta = 2 \sin \dfrac{\alpha \pm \beta}{2} \cos \dfrac{\alpha \mp \beta}{2} \\[7ex] $ Product-to-Sum Formulas

$ (1.) \sin \alpha * \sin \beta = \dfrac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)] \\[5ex] (2.) \cos \alpha * \cos \beta = \dfrac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)] \\[5ex] (3.) \sin \alpha * \cos \beta = \dfrac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha + \beta)] \\[5ex] $

Factoring Formulas

x is any trigonometric ratio
y is any trigonometric ratio

$ \underline{Difference\;\;of\;\;Two\;\;Squares} \\[3ex] (1.)\;\;x^2 - y^2 = (x + y)(x - y) \\[5ex] \underline{Difference\;\;of\;\;Two\;\;Cubes} \\[3ex] (2.)\;\; x^3 - y^3 = (x - y)(x^2 + xy + y^2) \\[5ex] \underline{Sum\;\;of\;\;Two\;\;Cubes} \\[3ex] (3.)\;\; x^3 + y^3 = (x + y)(x^2 - xy + y^2) \\[5ex] $

Triangle Laws

Pythagorean Theorem:
Applies only to right triangles.
In a right triangle, the square of the length of the hypotenuse is the sum of the squares of the other two sides.

$hyp^2 = leg^2 + leg^2$

x is any trigonometric ratio
y is any trigonometric ratio

Sine Law:
Applies to all triangles.
It states that the ratio of the side length of any triangle to the sine of the angle measure opposite that side is the same for the three sides of the triangle.

$ \dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} \\[5ex] $ OR

The ratio of the angle measure of any triangle to the side length opposite that angle is the same for the three angles of the triangle.

$ \dfrac{\sin A}{a} = \dfrac{\sin B}{b} = \dfrac{\sin C}{c} \\[5ex] $ Cosine Law:
Applies to all triangles.
It states that the square of a side of a triangle is the difference between the sum of the squares of the other two sides and twice the product of the two sides and the included angle.

$ a^2 = b^2 + c^2 - 2bc \cos A \\[3ex] \cos A = \dfrac{b^2 + c^2 - a^2}{2bc} \\[5ex] \rightarrow A = \cos^{-1} \left(\dfrac{b^2 + c^2 - a^2}{2bc}\right) \\[5ex] b^2 = a^2 + c^2 - 2ac \cos B \\[3ex] \cos B = \dfrac{a^2 + c^2 - b^2}{2ac} \\[5ex] \rightarrow B = \cos^{-1} \left(\dfrac{a^2 + c^2 - b^2}{2ac}\right) \\[5ex] c^2 = a^2 + b^2 - 2ab \cos C \\[3ex] \cos C = \dfrac{a^2 + b^2 - c^2}{2ab} \\[5ex] \rightarrow C = \cos^{-1} \left(\dfrac{a^2 + b^2 - c^2}{2ab}\right) \\[5ex] $

Theorems

(1.) The sum of the interior angles of a triangle is 180°

(2.) The sum of angles on a straight line is 180°

(3.) The exterior angle of a triangle is the sum of the two interior opposite angles.

(4.)

Circle Formulas

Except stated otherwise, use:

$ d = diameter \\[3ex] r = radius \\[3ex] L = arc\:\:length \\[3ex] A = area\;\;of\;\;sector \\[3ex] P = perimeter\;\;of\;\;sector \\[3ex] \theta = central\:\:angle \\[3ex] \pi = \dfrac{22}{7} \\[5ex] RAD = radians \\[3ex] ^\circ = DEG = degrees \\[7ex] \underline{\theta\;\;in\;\;DEG} \\[3ex] L = \dfrac{2\pi r\theta}{360} = \dfrac{\pi r\theta}{180} \\[5ex] \theta = \dfrac{180L}{\pi r} \\[5ex] r = \dfrac{180L}{\pi \theta} \\[5ex] A = \dfrac{\pi r^2\theta}{360} \\[5ex] \theta = \dfrac{360A}{\pi r^2} \\[5ex] r = \dfrac{360A}{\pi\theta} \\[5ex] P = \dfrac{r(\pi\theta + 360)}{180} \\[7ex] \underline{\theta\;\;in\;\;RAD} \\[3ex] L = r\theta \\[5ex] \theta = \dfrac{L}{r} \\[5ex] r = \dfrac{L}{\theta} \\[5ex] A = \dfrac{r^2\theta}{2} \\[5ex] \theta = \dfrac{2A}{r^2} \\[5ex] r = \sqrt{\dfrac{2A}{\theta}} \\[5ex] P = r(\theta + 2) \\[7ex] Circumference\:\:of\:\:a\:\:circle = 2\pi r = \pi d \\[3ex] L = \dfrac{2A}{r} \\[5ex] r = \dfrac{2A}{L} \\[5ex] A = \dfrac{Lr}{2} $

(1.) Prove that $\sec^6 x - \tan^6 x = 1 + 3\sec^2 x\tan^2 x$


$ \sec^6 x - \tan^6 x = 1 + 3\sec^2 x\tan^2 x \\[4ex] \text{From the LHS} \\[4ex] \sec^6 x - \tan^6 x \\[5ex] Let: \\[3ex] A = \sec^2 x \\[3ex] B = \tan^2 x \\[5ex] \sec^6 x - \tan^6 x = (\sec^2 x)^3 - (\tan^2 x)^3 \\[4ex] = A^3 - B^3 \\[4ex] = (A - B)(A^2 + AB + B^2) ...\text{Difference of Two Cubes} \\[3ex] = (\sec^2 x - \tan^2 x)[(\sec^2 x)^2 + \sec^2 x(\tan^2 x) + (\tan^2 x)^2] \\[4ex] ..........................................................................\\[3ex] \tan^2 x + 1 = \sec^2 x...\text{Pythagorean Identity} \\[3ex] \sec^2 x - \tan^2 x = 1 \\[3ex] \text{Substitute for } \sec^2 x - \tan^2 x \\[4ex] ..........................................................................\\[3ex] = 1[(\sec^2 x)^2 + \sec^2 x(\tan^2 x) + (\tan^2 x)^2] \\[4ex] = \sec^4 x + \sec^2 x \tan^2 x + \tan^4 x \\[4ex] ..........................................................................\\[3ex] \sec^2 x = 1 + \tan^2 x \\[3ex] \sec^4 x = (\sec^2 x)^2 \\[4ex] \sec^4 x = (1 + \tan^2 x)^2 \\[4ex] \text{Substitute for } \sec^4 x \\[4ex] ..........................................................................\\[3ex] = (1 + \tan^2 x)^2 + \sec^2 x \tan^2 x + \tan^4 x \\[4ex] = (1 + \tan^2 x)(1 + \tan^2 x) + \sec^2 x \tan^2 x + \tan^4 x \\[4ex] = 1 + \tan^2 x + \tan^2 x + \tan^4 x + \sec^2 x \tan^2 x + \tan^4 x \\[4ex] = 2\tan^4 x + 2\tan^2 x + 1 + \sec^2 x \tan^2 x \\[4ex] = 2\tan^2 x(\tan^2 x + 1) + 1 + \sec^2 x \tan^2 x \\[4ex] \text{Substitute for } \tan^2 x + 1 ...\text{Pythagorean Identity} \\[3ex] = 2\tan^2 x \sec^2 x + 1 + \sec^2 x \tan^2 x \\[4ex] = 2\sec^2 x \tan^2 x + 1 + \sec^2 x \tan^2 x \\[4ex] = 1 + 3\sec^2 x\tan^2 x \\[4ex] = RHS $
(2.) Solve $\tan 3x = -1$ for $-\dfrac{\pi}{2} \le x \le \dfrac{\pi}{2}$, giving your answer in terms of π
Check your solution.


We shall work in degrees, find the answer(s) in degrees, then convert back to radians

$ \pi\;radians = 180^\circ \\[3ex] -\dfrac{\pi}{2}\;radians = -\dfrac{180^\circ}{2} = -90^\circ \\[5ex] \dfrac{\pi}{2}\;radians = \dfrac{180^\circ}{2} = 90^\circ \\[5ex] \tan 3x = -1 \\[3ex] 3x = \tan^{-1}(-1) \\[3ex] 3x = -45 \\[3ex] x = -\dfrac{45}{3} \\[5ex] x = -15^\circ \\[3ex] -15^\circ \text{ is in the interval } [-90^\circ, 90^\circ] ...\text{keep it} \\[5ex] \text{tangent is negative in the 2nd and 4th quadrants} \\[3ex] 180 - 15 = 165^\circ ...\text{2nd Quadrant Identity} \\[3ex] 165^\circ \text{ is not in the interval } [-90^\circ, 90^\circ] ...\text{discard it} \\[3ex] \text{The other angle based on 4th Quadrant will not be in the interval } [-90^\circ, 90^\circ] \\[5ex] \text{Convert degrees to radians} \\[3ex] -15^\circ * \dfrac{\pi\;radians}{180^\circ} \\[5ex] = -\dfrac{\pi}{12} \\[5ex] x = -\dfrac{\pi}{12}\;radians \\[5ex] $ Check
$x = -\dfrac{\pi}{12}\;radians$
LHS RHS
$ \tan 3x \\[3ex] \tan \left[3\left(-\dfrac{\pi}{12}\right)\right] \\[5ex] \tan \left(-\dfrac{\pi}{4}\right) \\[5ex] -1 $ $-1$

Calculator 2
(3.) Solve and Check the equation $\cot^2 2\theta + 3\csc 2\theta = 9$ for $-90^\circ \le \theta \le 90^\circ$


$ \cot^2 2\theta + 3\csc 2\theta = 9 \\[3ex] ............................................................................... \\[3ex] \cot^2 2\theta = \dfrac{\cos^2 2\theta}{\sin^2 2\theta} ...\text{Quotient Identity} \\[5ex] \csc 2\theta = \dfrac{1}{\sin^2 2\theta} ...\text{Reciprocal Identity} \\[5ex] ............................................................................... \\[3ex] \dfrac{\cos^2 2\theta}{\sin^2 2\theta} + 3 * \dfrac{1}{\sin 2\theta} = 9 \\[5ex] ............................................................................... \\[3ex] \sin^2 2\theta + \cos^2 2\theta = 1 ...\text{Pythagorean Identity} \\[3ex] \cos^2 2\theta = 1 - \sin^2 2\theta \\[3ex] ................................................................................ \\[3ex] \dfrac{1 - \sin^2 2\theta}{\sin^2 2\theta} + \dfrac{3}{\sin 2\theta} = 9 \\[5ex] \dfrac{1 - \sin^2 2\theta + 3\sin 2\theta}{\sin^2 2\theta} = 9 \\[5ex] 9\sin^2 2\theta = 1 - \sin^2 2\theta + 3\sin 2\theta \\[3ex] 9\sin^2 2\theta + \sin^2 2\theta - 3\sin 2\theta - 1 = 0 \\[3ex] 10\sin^2 2\theta - 3\sin 2\theta - 1 = 0 \\[3ex] Let\;\;\sin 2\theta = p \\[3ex] 10p^2 - 3p - 1 = 0 \\[3ex] 10p^2 + 2p - 5p - 1 = 0 \\[3ex] 2p(5p + 1) - 1(5p + 1) = 0 \\[3ex] (5p + 1)(2p - 1) = 0 \\[3ex] 5p + 1 = 0 \hspace{2em}OR\hspace{2em} 2p - 1 = 0 \\[3ex] 5p = -1 \hspace{2em}OR\hspace{2em} 2p = 1 \\[3ex] p = -\dfrac{1}{5} \hspace{2em}OR\hspace{2em} p = \dfrac{1}{2} \\[5ex] When: \\[3ex] p = -\dfrac{1}{5} \\[5ex] \sin 2\theta = -\dfrac{1}{5} \\[5ex] 2\theta = \sin^{-1}\left(-\dfrac{1}{5}\right) \\[5ex] 2\theta = -11.53695903 \\[3ex] \theta = \dfrac{-11.53695903}{2} \\[5ex] \theta = -5.768479516^\circ \\[5ex] \text{sine is negative in the 3rd and 4th quadrants} \\[3ex] 5.768479516 - 180 = -174.2315205 \\[3ex] -174.2315205^\circ \lt -90^\circ ...\text{discard} \\[3ex] \text{No need to find the other angle because it will be less than } -90^\circ \\[5ex] When: \\[3ex] p = \dfrac{1}{2} \\[5ex] \sin 2\theta = \dfrac{1}{2} \\[5ex] \text{sine is positive in the 1st and 2nd quadrants} \\[3ex] 2\theta = \sin^{-1}\left(\dfrac{1}{2}\right) \\[5ex] \underline{\text{1st Quadrant}} \\[3ex] 2\theta = 30 \\[3ex] \theta = \dfrac{30}{2} \\[5ex] \theta = 15^\circ \\[5ex] \underline{\text{2nd Quadrant}} \\[3ex] 2\theta = 180 - 30 ...\text{2nd Quadrant Identity} \\[3ex] 2\theta = 150 \\[3ex] \theta = \dfrac{150}{2} \\[5ex] \theta = 75^\circ \\[5ex] \therefore \theta = -5.768479516^\circ, 15^\circ, 75^\circ \\[3ex] $ Check
$\theta = -5.768479516^\circ, 15^\circ, 75^\circ$
LHS RHS
$ \cot^2 2\theta + 3\csc 2\theta \\[5ex] .................................................. \\[3ex] Also: \\[3ex] \cot^2 2\theta = \dfrac{1}{\tan^2 2\theta}...\text{Reciprocal Identity} \\[5ex] \text{It is my preference to check with it} \\[3ex] \text{But you may use the Quotient Identity} \\[3ex] .................................................. \\[3ex] \theta = -5.768479516^\circ \\[3ex] \cot^2 2(-5.768479516) + 3\csc 2(-5.768479516) \\[3ex] \cot^2 (-11.53695903) + 3\csc (-11.53695903) \\[3ex] \left[\dfrac{1}{\tan (-11.53695903)}\right]^2 + \dfrac{3}{\sin (-11.53695903)} \\[5ex] 24 + -15 \\[3ex] 9 $
$ \theta = 15^\circ \\[3ex] \cot^2 2(15) + 3\csc 2(15) \\[3ex] \cot^2 (30) + 3\csc (30) \\[3ex] \left[\dfrac{1}{\tan (30)}\right]^2 + \dfrac{3}{\sin (30)} \\[5ex] 3 + 6 \\[3ex] 9 $
$ \theta = 75^\circ \\[3ex] \cot^2 2(75) + 3\csc 2(75) \\[3ex] \cot^2 (150) + 3\csc (150) \\[3ex] \left[\dfrac{1}{\tan (150)}\right]^2 + \dfrac{3}{\sin (150)} \\[5ex] 3 + 6 \\[3ex] 9 $
9

Calculator 3-1st

Calculator 3-2nd
(4.) Solve the equation $3\sin\left(2x + \dfrac{\pi}{4}\right) = \sqrt{3}\cos\left(2x + \dfrac{\pi}{4}\right)$ for $0 \le x \le \pi$
Check your solution.


We shall work in degrees, find the answer(s) in degrees, then convert back to radians

$ 3\sin\left(2x + \dfrac{\pi}{4}\right) = \sqrt{3}\cos\left(2x + \dfrac{\pi}{4}\right) \;\;for\;\; 0 \le x \le \pi \\[5ex] \pi\;radians = 180^\circ \\[3ex] Let\;\; 2x + \dfrac{\pi}{4} = p \\[5ex] p = 2x + \dfrac{180}{4} \\[5ex] p = 2x + 45 \\[5ex] 3\sin p = \sqrt{3} \cos p \\[3ex] \dfrac{\sin p}{\cos p} = \dfrac{\sqrt{3}}{3} \\[5ex] \tan p = \dfrac{\sqrt{3}}{3} \\[5ex] p = \tan^{-1}\left(\dfrac{\sqrt{3}}{3} \right) \\[5ex] p = 30^\circ \\[3ex] \text{tangent is positive in the 1st and 3rd quadrants} \\[3ex] 30^\circ ...\text{1st quadrant} \\[3ex] 30 + 180 = 210^\circ...\text{3rd Quadrant Identity} \\[5ex] When: \\[3ex] p = 30^\circ \\[3ex] 2x + 45 = 30 \\[3ex] 2x = 30 - 45 \\[3ex] 2x = -15 \\[3ex] x = -\dfrac{15}{2} \\[5ex] x = -7.5^\circ \\[3ex] -7.5^\circ \text{ is not in the interval } [0^\circ, 180^\circ] ...\text{discard it} \\[5ex] When: \\[3ex] p = 210^\circ \\[3ex] 2x + 45 = 210 \\[5ex] 2x = 210 - 45 \\[3ex] 2x = 165 \\[3ex] x = \dfrac{165}{2} \\[5ex] x = 82.5^\circ \\[3ex] 82.5^\circ \text{ is in the interval } [0^\circ, 180^\circ] ...\text{keep it} \\[5ex] \text{Convert degrees to radians} \\[3ex] 82.5^\circ * \dfrac{\pi\;radians}{180^\circ} \\[5ex] = \dfrac{825}{10} * \dfrac{\pi}{180} \\[5ex] = \dfrac{11\pi}{24} \\[5ex] x = \dfrac{11\pi}{24}\;radians \\[5ex] $ Check
$x = \dfrac{11\pi}{24}\;radians$
LHS RHS
$ 3\sin\left(2x + \dfrac{\pi}{4}\right) \\[5ex] 3\sin\left(2 * \dfrac{11\pi}{24} + \dfrac{\pi}{4}\right) \\[5ex] 3\sin\left(\dfrac{11\pi}{12} + \dfrac{3\pi}{12}\right) \\[5ex] 3\sin\left(\dfrac{14\pi}{12}\right) \\[5ex] 3\sin\left(\dfrac{7\pi}{6}\right) \\[5ex] -1.5 $ $ \sqrt{3}\cos\left(2x + \dfrac{\pi}{4}\right) \\[5ex] \sqrt{3}\cos\left(\dfrac{7\pi}{6}\right) \\[5ex] -1.5 $

Calculator 4
(5.) Solve the equation $\tan(B + 150^\circ) = -\sqrt{3}$ for 0° ≤ B ≤ 360°
Check your solution.


$ \tan(B + 150^\circ) = -\sqrt{3} \\[3ex] \text{tangent is negative in the 2nd and 4th quadrants} \\[3ex] B + 150 = \tan^{-1}{-\sqrt{3}} \\[3ex] B + 150 = -60 \\[3ex] B = -60 - 150 \\[3ex] B = -210^\circ \\[3ex] -210^\circ \text{ is not in the interval } [0^\circ, 360^\circ] ...\text{discard it} \\[5ex] \underline{\text{2nd Quadrant Identity}} \\[3ex] B + 150 = 180 - 60 \\[3ex] B + 150 = 120 \\[3ex] B = 120 - 150 \\[3ex] B = -30^\circ \\[3ex] -30^\circ \text{ is not in the interval } [0^\circ, 360^\circ] ...\text{discard it} \\[5ex] \underline{\text{4th Quadrant Identity}} \\[3ex] B + 150 = 360 - 60 \\[3ex] B + 150 = 300 \\[3ex] B = 300 - 150 \\[3ex] B = 150^\circ \\[3ex] 150^\circ \text{ is in the interval } [0^\circ, 360^\circ] ...\text{keep it} \\[5ex] \text{Let us find the other angles in that range} \\[3ex] \underline{\text{Coterminal Angles}} \\[3ex] B = -210 + 360 \\[3ex] B = 150^\circ...\text{got it already} \\[5ex] B = -30 + 360 \\[3ex] B = 330^\circ \\[3ex] 330^\circ \text{ is in the interval } [0^\circ, 360^\circ] ...\text{keep it} \\[5ex] \therefore B = 150^\circ, 330^\circ \\[3ex] $ Check
$B = 150^\circ, 330^\circ$
LHS RHS
$ \tan(B + 150^\circ) \\[3ex] When: \\[3ex] B = 150^\circ \\[3ex] \tan(150 + 150) \\[3ex] \tan (300) \\[3ex] -\sqrt{3} $
$ When: \\[3ex] B = 330^\circ \\[3ex] \tan(330 + 150) \\[3ex] \tan (480) \\[3ex] -\sqrt{3} $
$-\sqrt{3}$

Calculator 5
(6.)


(7.)


(8.)


(9.)


(10.)


(11.)

(12.)


(13.)


(14.)


(15.)


(16.)


(17.)


(18.)


(19.)


(20.)






Top




(21.)


(22.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.