Please Read Me.

Differential Calculus

Welcome to Our Site


I greet you this day,

These are the solutions to the WASSCE Further Mathematics past questions on Differential Calculus.
The TI-84 Plus CE shall be used for applicable questions.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and helpful in your passing the Further Mathematics test of the WASSCE, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Difference Quotient and Derivative (Derivatives by Limits)

$ \text{Function} = f(x) \\[3ex] \text{Difference Quotient} = DQ \\[3ex] \text{Derivative} = f'(x) = \dfrac{dy}{dx} = y' \\[5ex] (1.)\;\; DQ = \dfrac{f(x + h) - f(x)}{h} \\[5ex] (2.)\;\; \dfrac{dy}{dx} = \displaystyle{\lim_{h \to 0}} \dfrac{f(x + h) - f(x)}{h} \\[5ex] (3.)\;\; f'(x) = \displaystyle{\lim_{h \to 0}} DQ $

Rules of Derivatives (Derivatives by Rules)

$ a, n \:\:are\:\:constants \\[3ex] (1.)\:\: \underline{Power\;\;Rule} \\[3ex] y = ax^n \\[3ex] \dfrac{dy}{dx} = nax^{n - 1} \\[7ex] (2.)\:\: \underline{Sum/Difference\;\;Rule} \\[3ex] y = u \pm v \pm w \\[3ex] u = f(x);\:\: v = f(x);\;\; w = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{du}{dx} \pm \dfrac{dv}{dx} \pm \dfrac{dw}{dx} \\[7ex] (3.)\:\: \underline{Chain\;\;Rule} \\[3ex] y = f(u) \\[3ex] u = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{du} * \dfrac{du}{dx} \\[7ex] Also: \\[3ex] y = f(u) \\[3ex] u = f(v) \\[3ex] v = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{du} * \dfrac{du}{dv} * \dfrac{dv}{dx} \\[7ex] Also: \\[3ex] y = f(u) \\[3ex] u = f(v) \\[3ex] v = f(w) \\[3ex] w = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{du} * \dfrac{du}{dv} * \dfrac{dv}{dw} * \dfrac{dw}{dx} \\[7ex] ...and\;\;so\;\;on\;\;and\;\;so\;\;forth \\[5ex] (4.)\:\: \underline{Product\;\;Rule} \\[3ex] y = u * v \\[3ex] u = f(x);\:\: v = f(x) \\[3ex] \dfrac{dy}{dx} = u\dfrac{dv}{dx} + v\dfrac{du}{dx} \\[7ex] (5.)\:\: \underline{Quotient\;\;Rule} \\[3ex] y = \dfrac{u}{v} \\[5ex] u = f(x);\:\: v = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{v\dfrac{du}{dx} - u\dfrac{dv}{dx}}{v^2} $

Standard Derivatives of Exponential Functions

$ a\;\; is\:\:a\;\;positive\:\:constant \\[3ex] k \:\:is\:\:a\;\:constant \\[3ex] (1.)\:\: y = e^x \\[3ex] \dfrac{dy}{dx} = e^x \\[7ex] (2.)\;\; y = e^{kx} \\[3ex] \dfrac{dy}{dx} = ke^{kx} \\[7ex] (3.)\;\; y = e^{-kx} \\[3ex] \dfrac{dy}{dx} = -ke^{kx} \\[7ex] (4.)\:\: y = a^x \\[3ex] \dfrac{dy}{dx} = a^x \ln a \\[7ex] $

Standard Derivatives of Logarithmic Functions

$ a\;\; is\:\:a\;\;positive\:\:constant \\[3ex] k \:\:is\:\:a\;\:constant \\[3ex] (1.)\:\: y = \ln x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x} \\[7ex] (2.)\:\: y = \log_a x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x \ln a} \\[7ex] (3.)\:\: y = \ln |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x} \\[7ex] (4.)\:\: y = \log_a |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x \ln a} \\[7ex] $

Standard Derivatives of Trigonometric Functions

$ (1.)\:\: y = \sin x \\[3ex] \dfrac{dy}{dx} = \cos x \\[7ex] (2.)\:\: y = \cos x \\[3ex] \dfrac{dy}{dx} = -\sin x \\[7ex] (3.)\:\: y = \tan x \\[3ex] \dfrac{dy}{dx} = \sec^2 x \\[7ex] (4.)\:\: y = \csc x \\[3ex] \dfrac{dy}{dx} = -\csc x \cot x \\[7ex] (5.)\:\: y = \sec x \\[3ex] \dfrac{dy}{dx} = \sec x \tan x \\[7ex] (6.)\:\: y = \cot x \\[3ex] \dfrac{dy}{dx} = -\csc^2 x $

Standard Derivatives of Inverse Trigonometric Functions

$ (1.)\:\: y = \sin^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{1 - x^2}} \\[7ex] (2.)\:\: y = \cos^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{\sqrt{1 - x^2}} \\[7ex] (3.)\;\; y = \tan^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 + x^2} \\[7ex] (4.)\:\: y = \csc^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{|x|\sqrt{x^2 - 1}} \\[7ex] (5.)\:\: y = \sec^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{|x|\sqrt{x^2 - 1}} \\[7ex] (6.)\;\; y = \cot^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{1 + x^2} \\[7ex] $

Standard Derivatives of Hyperbolic Functions

$ (1.)\:\: y = \sin hx \\[3ex] \dfrac{dy}{dx} = \cos hx \\[7ex] (2.)\:\: y = \cos hx \\[3ex] \dfrac{dy}{dx} = \sin hx \\[7ex] (3.)\;\; y = \tan x \\[3ex] \dfrac{dy}{dx} = \sec^2 hx \\[7ex] (4.)\;\; y = \csc hx \\[3ex] \dfrac{dy}{dx} = -\csc hx \cot hx \\[7ex] (5.)\;\; y = \sec hx \\[3ex] \dfrac{dy}{dx} = -\sec hx \tan hx \\[7ex] (6.)\;\; y = \cot hx \\[3ex] \dfrac{dy}{dx} = -\csc^2 hx \\[7ex] $

Standard Derivatives of Inverse Hyperbolic Functions

$ (1.)\:\: y = \sin h^{-1}x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{x^2 + 1}} \\[7ex] (2.)\:\: y = \cos h^{-1}x \;\;\;\;\;\;where:\;\; x\gt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{x^2 - 1}} \\[7ex] (3.)\;\; y = \tan h^{-1}x \;\;\;\;\;\;where:\;\; |x| \lt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 - x^2} \\[7ex] (4.)\;\; y = \csc h^{-1}x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{|x|\sqrt{x^2 + 1}} \\[7ex] (5.)\;\; y = \sec h^{-1}x \;\;\;\;\;\;where:\;\; 0\lt x \lt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{x\sqrt{1 - x^2}} \\[7ex] (6.)\;\; y = \cot h^{-1}x \;\;\;\;\;\;where:\;\; |x| \gt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 - x^2} \\[7ex] $

Standard Derivatives of Absolute Value Functions

$ (1.)\:\: y = |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{|x|}{x} \\[7ex] $

Newton's Method

$ x_{n + 1} = x_n - \dfrac{f(x)}{f'(x)} $

Theorems

(1.)

(2.)

Applications

(1.) Economics

$ (a.) \\[3ex] MC = TC'(x) \\[3ex] where \\[3ex] x = \text{number of items} \\[3ex] MC = \text{marginal cost function} \\[3ex] TC = \text{total cost function} \\[5ex] (b.) \\[3ex] MR = TR'(x) \\[3ex] where \\[3ex] x = \text{number of items} \\[3ex] MR = \text{marginal revenue function} \\[3ex] TR = \text{total revenue function} \\[5ex] (c.) \\[3ex] MPC = NC'(x) \\[3ex] where \\[3ex] x = \text{disposable national income} \\[3ex] MPC = \text{marginal propensity to consume} \\[3ex] NC = \text{national consumption function} \\[5ex] $ (2.)

(1.) A curve is given by $y = 8x + \dfrac{27}{2x^2}$.
Find:
(a.) an expression for $\dfrac{dy}{dx}$;
(b.) the coordinates of the stationary point on the curve and the nature of the stationary point;
(c.) the equation of the normal to the curve at (2, 2)


$ (a.) \\[3ex] y = 8x + \dfrac{27}{2x^2} \\[5ex] = 8x + \dfrac{27}{2} * \dfrac{1}{x^2} \\[5ex] = 8x^1 + \dfrac{27}{2} * x^{-2} \\[5ex] \dfrac{dy}{dx} = 1 * 8x^{1 - 1} + -2 * \dfrac{27}{2} * x^{-2 - 1} \\[5ex] = 8x^0 + -27x^{-3} \\[3ex] = 8(1) - \dfrac{27}{x^3} \\[5ex] = 8 - \dfrac{27}{x^3} \\[5ex] (b.) \\[3ex] \dfrac{dy}{dx} = 0 \\[5ex] 8 - \dfrac{27}{x^3} = 0 \\[5ex] 8 = \dfrac{27}{x^3} \\[5ex] 8x^3 = 27 \\[3ex] x^3 = \dfrac{27}{8} \\[5ex] x = \sqrt[3]{\dfrac{27}{8}} \\[5ex] x = \dfrac{3}{2} \\[5ex] y = 8x + \dfrac{27}{2x^2} \\[5ex] y = 8x + 27 \div 2x^2 \\[5ex] @\; x = \dfrac{3}{2} \\[5ex] y = 8\left(\dfrac{3}{2}\right) + 27 \div 2\left(\dfrac{3}{2}\right)^2 \\[5ex] = 4(3) + 27 \div \dfrac{3^2}{2} \\[5ex] = 12 + 27 \div \dfrac{9}{2} \\[5ex] = 12 + 27 * \dfrac{2}{9} \\[5ex] = 12 + 6 \\[3ex] = 18 \\[3ex] \text{Stationary Point} = (x, y) = \left(\dfrac{3}{2}, 18\right) \\[5ex] $ To determine the nature of the stationary point, let us use the Second Derivative Test
If the second derivative is positive at the stationary point, the graph of the function is concave upward, and the point is a local minimum.
If the second derivative is negative, the graph of the function is concave downward, and the point is a local maximum.

$ \underline{\text{Nature of the Stationary Point: 2nd Derivative Test}} \\[3ex] \dfrac{dy}{dx} = 8 - \dfrac{27}{x^3} \\[5ex] \dfrac{dy}{dx} = 8 - 27x^{-3} \\[5ex] \dfrac{d^2y}{dx^2} = -3 * -27 * x^{-3 - 1} \\[5ex] = 81 * x^{-4} \\[3ex] = \dfrac{81}{x^4} \\[5ex] = 81 \div x^4 \\[3ex] @\; x = \dfrac{3}{2} \\[5ex] \dfrac{d^2y}{dx^2} = 81 \div \left(\dfrac{3}{2}\right)^4 \\[5ex] = 81 \div \dfrac{3^4}{2^4} \\[5ex] = 81 \div \dfrac{81}{16} \\[5ex] = 81 * \dfrac{16}{81} \\[5ex] = 16 \\[3ex] 16 \gt 0 \\[3ex] \therefore \left(\dfrac{3}{2}, 18\right) \text{is a minimum point} \\[5ex] $ Let:
m1 = slope of the tangent to the curve = derivative
m2 = slope of the normal to the curve
The product of the two slopes is −1 because the normal to the curve is perpendicular to the tangent to the curve

$ (c.) \\[3ex] \dfrac{dy}{dx} = 8 - \dfrac{27}{x^3} \\[5ex] @\; (2, 2) \\[3ex] m_1 = \left.\dfrac{dy}{dx}\right|_{x = 2} = 8 - \dfrac{27}{2^3} \\[5ex] = 8 - \dfrac{27}{8} \\[5ex] = \dfrac{64}{8} - \dfrac{27}{8} \\[5ex] = \dfrac{64 - 27}{8} \\[5ex] = \dfrac{37}{8} \\[5ex] m_1 * m_2 = -1 \\[3ex] m_2 = -\dfrac{1}{m_1} \\[5ex] = -1 \div m_1 \\[3ex] = -1 \div \dfrac{37}{8} \\[5ex] = -1 * \dfrac{8}{37} \\[5ex] = -\dfrac{8}{27} \\[5ex] For\;\;(2, 2) \\[3ex] (x_1, y_1) = (2, 2) \\[3ex] x_1 = 2 \\[3ex] y_1 = 2 \\[5ex] \underline{\text{Point — Slope Form}} \\[3ex] y - y_1 = m_2(x - x_1) \\[3ex] y - 2 = -\dfrac{8}{27}(x - 2) \\[5ex] y = -\dfrac{8x}{37} + \dfrac{16}{37} + 2 \\[5ex] y = -\dfrac{8x}{37} + \dfrac{16}{37} + \dfrac{74}{37} \\[5ex] y = \dfrac{-8x}{37} + \dfrac{90}{37} \\[5ex] LCD = 37 \\[3ex] 37y = 37\left(\dfrac{-8x}{37}\right) + 37\left(\dfrac{90}{37}\right) \\[5ex] 37y = -8x + 90 \\[3ex] 37y + 8x - 90 = 0 $
(2.) Find the equation of the normal to the curve $y = 7x - 5x^2$ at x = 2.


1st: We shall find the slope of the tangent to the curve at at x = 2.
This is the derivative of the function at x = 2.

2nd: We shall determine the slope of the normal to the curve
The normal to the curve is perpendicular to the tangent to the curve
Hence, the product of the two slopes (product of the slope of the tangent and the slope of the normal) is −1

3rd: We shall determine the point (x1, y1) on the curve
We already know the x-coordinate, but we shall find the y-coordinate

4th: We shall use the Point-Slope Form to determine the equation of the normal to the curve.

$ y = 7x - 5x^2 \\[3ex] \underline{\text{Slope of the tangent to the curve}}, m_T \\[3ex] \dfrac{dy}{dx} = 7 - 10x \\[3ex] @\;x = 2 \\[3ex] m_T = \left.\dfrac{dy}{dx}\right|_{x = 2} \\[5ex] = 7 - 10(2) \\[3ex] = 7 - 20 \\[3ex] = -13 \\[5ex] \underline{\text{Slope of the normal to the curve}}, m_N \\[3ex] m_N * m_T = -1 \\[3ex] m_N * 13 = -1 \\[3ex] m_N = \dfrac{-1}{-13} \\[5ex] m_N = \dfrac{1}{13} \\[5ex] \underline{\text{Point on the curve}}, (x_1, y_1) \\[3ex] y = 7x - 5x^2 \\[3ex] @\;x = 2 \\[3ex] y = 7(2) - 5(2)^2 \\[3ex] = 14 - 5(4) \\[3ex] = 14 - 20 \\[3ex] = -6 \\[3ex] (x_1, y_1) = (2, -6) \\[5ex] \underline{\text{Equation of the normal to the curve}} \\[3ex] \text{Point – Slope Form} \\[3ex] y - y_1 = m_N(x - x_1) \\[4ex] y - -6 = \dfrac{1}{13}(x - 2) \\[5ex] y + 6 = \dfrac{1}{13}x - \dfrac{2}{13} \\[5ex] y = \dfrac{1}{13}x - \dfrac{2}{13} - 6 \\[5ex] y = \dfrac{1}{13}x - \dfrac{2}{13} - \dfrac{78}{13} \\[5ex] y = \dfrac{1}{13}x - \dfrac{80}{13} \\[5ex] LCD = 13 \\[3ex] \text{Multiply each term by 13} \\[3ex] 13y = 13\left(\dfrac{1}{13}x\right) - 13\left(\dfrac{80}{13}\right) \\[5ex] 13y = x - 80 \\[3ex] 13y - x + 80 = 0 $
(3.)


(4.) A boy runs in a line and his displacement at time t seconds after leaving the start point O is X metres, where $20X = 4t^2 + t^3$.
Find the:
(i.) velocity of the boy when t = 15 seconds;
(ii.) value of t for which the acceleration of the boy is 8 times his initial acceleration.


$ 20X = 4t^2 + t^3 \\[3ex] X = \dfrac{4t^2 + t^3}{20} \\[5ex] X = \dfrac{4t^2}{20} + \dfrac{t^3}{20} \\[5ex] X = \dfrac{1}{5}t^2 + \dfrac{1}{20}t^3 \\[5ex] velocity = v \\[3ex] v = \dfrac{dX}{dt} = 2\left(\dfrac{1}{5}\right)^t + 3\left(\dfrac{1}{20}\right)^{t^2} \\[5ex] v = \dfrac{dX}{dt} = \dfrac{2t}{5} + \dfrac{3t^2}{20} \\[5ex] (i.) \\[3ex] v|_{t = 15} = \dfrac{2(15)}{5} + \dfrac{3(15)^2}{20} \\[5ex] v|_{t = 15} = 6 + 33.75 \\[4ex] v|_{t = 15} = 39.75\;m/s \\[5ex] acceleration = a \\[3ex] a = \dfrac{dv}{dt} \\[5ex] a = \dfrac{2}{5} + 2\left(\dfrac{3}{20}\right)^t \\[5ex] a = \dfrac{2}{5} + \dfrac{6t}{20} \\[5ex] \underline{\text{Initial Acceleration}}, a_0 \\[3ex] t = 0 \\[3ex] a_0 = a|_{t = 0} = \dfrac{2}{5} + \dfrac{6(0)}{20} \\[5ex] a_0 = a|_{t = 0} = \dfrac{2}{5} \\[5ex] \text{8 times initial acceleration} = 8\left(\dfrac{2}{5}\right) = \dfrac{16}{5} \\[5ex] (ii.) \\[3ex] a = 8 * a_0 \\[3ex] \dfrac{2}{5} + \dfrac{6t}{20} = \dfrac{16}{5} \\[5ex] \dfrac{6t}{20} = \dfrac{16}{5} - \dfrac{2}{5} \\[5ex] \dfrac{6t}{20} = \dfrac{14}{5} \\[5ex] t = \dfrac{14}{5} * \dfrac{20}{6} \\[5ex] t = 9\dfrac{1}{3}\;seconds $
(5.)


(6.) Given that $x^2 + y^2 = 2pxy$, where p is a constant, find $\dfrac{dy}{dx}$


Implicit Differentiation
Function Derivative
$x^2$ $ 2x\dfrac{dx}{dx} \\[5ex] 2x $
$y^2$ $ 2y\dfrac{dy}{dx} $
$2pxy$ $ \underline{\text{Product Rule}} \\[3ex] Let\;\;u = 2px \hspace{3em} v = y \\[3ex] \text{Note that p is a constant} \\[3ex] \dfrac{du}{dx} = 2p \\[5ex] \dfrac{dv}{dx} = \dfrac{dy}{dx} \\[5ex] \implies \\[3ex] 2px * \dfrac{dy}{dx} + y * 2p \\[5ex] 2px\dfrac{dy}{dx} + 2py $

$ x^2 + y^2 = 2pxy \\[4ex] 2x + 2y\dfrac{dy}{dx} = 2px\dfrac{dy}{dx} + 2py \\[5ex] 2y\dfrac{dy}{dx} - 2px\dfrac{dy}{dx} = 2py - 2x \\[5ex] \dfrac{dy}{dx}(2y - 2px) = 2py - 2x \\[5ex] \dfrac{dy}{dx} = \dfrac{2py - 2x}{2y - 2px} \\[5ex] = \dfrac{2(py - x)}{2(y - px)} \\[5ex] = \dfrac{py - x}{y - px} $
(7.)


(8.)


(9.)


(10.)


(11.)


(12.)


(13.)


(14.)


(15.)


(16.)


(17.)


(18.)


(19.)


(20.)






Top




(21.)


(22.)


(23.)


(24.)


(25.)


(26.)


(27.)


(28.)


(29.)


(30.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.