Please Read Me.

Linear Algebra

Welcome to Our Site


I greet you this day,

These are the solutions to the WASSCE Further Mathematics past questions on Linear Algebra.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and helpful in your passing the Further Mathematics test of the WASSCE, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

2 by 2 Matrix

Let:

$ A = \begin{bmatrix} a_{11} & a_{12} \\[3ex] a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \color{red}{a} & \color{darkblue}{b} \\[3ex] \color{darkblue}{c} & \color{red}{d} \end{bmatrix} \\[10ex] (1.)\;\; minor\:\: A = \begin{bmatrix} d & c \\[3ex] b & a \end{bmatrix} \\[10ex] \text{The signs to remember cofactors when determining the determinant of a matrix is}: \\[3ex] \begin{vmatrix} + & - \\[3ex] - & + \end{vmatrix} \\[10ex] (2.)\;\; cofactor\:\: A = \begin{bmatrix} d & -c \\[3ex] -b & a \end{bmatrix} \\[10ex] (3.)\;\; adj\:\: A = \begin{bmatrix} d & -b \\[3ex] -c & a \end{bmatrix} \\[10ex] (4.)\;\; det\;A = ad - cb $



3 by 3 Matrix

Let:

$ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\[3ex] a_{21} & a_{22} & a_{23} \\[3ex] a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a & b & c \\[3ex] d & e & f \\[3ex] g & h & i \end{bmatrix} \\[15ex] (1.)\;\; minor\:\: A = \begin{bmatrix} ei - hf & di - gf & dh - ge \\[3ex] bi - hc & ai - gc & ah - gb \\[3ex] bf - ec & af - dc & ae - db \end{bmatrix} \\[15ex] \text{The signs to remember cofactors when determining the determinant of a matrix is}: \\[3ex] \begin{vmatrix} + & - & + \\[3ex] - & + & - \\[3ex] + & - & + \end{vmatrix} \\[10ex] (2.)\;\; cofactor\:\: A = \begin{bmatrix} ei - hf & gf - di & dh - ge \\[3ex] hc - bi & ai - gc & gb - ah \\[3ex] bf - ec & dc - af & ae - db \end{bmatrix} \\[15ex] (3.)\;\; adj\: A = \begin{bmatrix} ei - hf & hc - bi & bf - ec \\[3ex] gf - di & ai - gc & dc - af \\[3ex] dh - ge & gb - ah & ae - db \end{bmatrix} \\[15ex] (4.)\;\; det\: A = aei + bgf + cdh - ahf - bdi - cge $

(1.) (a.) Calculate

$ \begin{vmatrix} 3 & 5 & -4 \\[3ex] 6 & -3 & -5 \\[3ex] -2 & 2 & 1 \end{vmatrix} \\[10ex] $ (b.) Using your result in (a.), solve the simultaneous equation

$ 3x + 5y - 4z = 1 \\[3ex] 6x - 3y - 5z = -15 \\[3ex] -2x + 2y + z = 5 \\[3ex] $

The question is asking us to use the Method of Determinants (also known as Cramer's Rule)

$ \begin{bmatrix} 3 & 5 & -4 \\[3ex] 6 & -3 & -5 \\[3ex] -2 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\[3ex] y \\[3ex] z \end{bmatrix} = \:\:\: \begin{bmatrix} 1 \\[3ex] -15 \\[3ex] 5 \end{bmatrix} \\[15ex] (a.) \\[3ex] \underline{\text{Denominator}} \\[3ex] \begin{vmatrix} + & - & + \\[3ex] - & + & - \\[3ex] + & - & + \end{vmatrix} \hspace{3em} \begin{vmatrix} 3 & 5 & -4 \\[3ex] 6 & -3 & -5 \\[3ex] -2 & 2 & 1 \end{vmatrix} \\[12ex] \underline{\text{1st Row}} \\[3ex] = 3\begin{vmatrix} -3 & -5 \\[3ex] 2 & 1 \end{vmatrix} -5\begin{vmatrix} 6 & -5 \\[3ex] -2 & 1 \end{vmatrix} + -4\begin{vmatrix} 6 & -3 \\[3ex] -2 & 2 \end{vmatrix} \\[12ex] = 3(-3 + 10) - 5(6 - 10) - 4(12 - 6) \\[3ex] = 3(7) - 5(-4) - 4(6) \\[3ex] = 21 + 20 - 24 \\[3ex] = 17 $

$ \underline{\text{Numerator for }x} \\[3ex] \begin{vmatrix} 1 & 5 & -4 \\[3ex] -15 & -3 & -5 \\[3ex] 5 & 2 & 1 \end{vmatrix} \\[12ex] \underline{\text{1st Row}} \\[3ex] = 1\begin{vmatrix} -3 & -5 \\[3ex] 2 & 1 \end{vmatrix} -5\begin{vmatrix} -15 & -5 \\[3ex] 5 & 1 \end{vmatrix} + -4\begin{vmatrix} -15 & -3 \\[3ex] 5 & 2 \end{vmatrix} \\[10ex] = (-3 + 10) - 5(-15 + 25) - 4(-30 + 15) \\[3ex] = 7 - 5(10) - 4(-15) \\[3ex] = 7 - 50 + 60 \\[3ex] = 17 $

$ \underline{\text{Numerator for }y} \\[3ex] \begin{vmatrix} 3 & 1 & -4 \\[3ex] 6 & -15 & -5 \\[3ex] -2 & 5 & 1 \end{vmatrix} \\[12ex] \underline{\text{3rd Row}} \\[3ex] = -2\begin{vmatrix} 1 & -4 \\[3ex] -15 & -5 \end{vmatrix} -5\begin{vmatrix} 3 & -4 \\[3ex] 6 & -5 \end{vmatrix} + 1\begin{vmatrix} 3 & 1 \\[3ex] 6 & -15 \end{vmatrix} \\[10ex] = -2(-5 - 60) - 5(-15 + 24) + (-45 - 6) \\[3ex] = -2(-65) -5(9) + -51 \\[3ex] = 130 - 45 - 51 \\[3ex] = 34 $

$ \underline{\text{Numerator for }z} \\[3ex] \begin{vmatrix} 3 & 5 & 1 \\[3ex] 6 & -3 & -15 \\[3ex] -2 & 2 & 5 \end{vmatrix} \\[12ex] \underline{\text{2nd Row}} \\[3ex] = -6\begin{vmatrix} 5 & 1 \\[3ex] 2 & 5 \end{vmatrix} + -3\begin{vmatrix} 3 & 1 \\[3ex] -2 & 5 \end{vmatrix} - -15\begin{vmatrix} 3 & 5 \\[3ex] -2 & 2 \end{vmatrix} \\[10ex] = -6(25 - 2) - 3(15 + 2) + 15(6 + 10) \\[3ex] = -6(23) - 3(17) + 15(16) \\[3ex] = -138 - 51 + 240 \\[3ex] = 51 $

$ x = \dfrac{17}{17} = 1 \\[5ex] y = \dfrac{34}{17} = 2 \\[5ex] z = \dfrac{51}{17} = 3 \\[5ex] $ Check
$x = 1,\;\;\;y = 2,\;\;\;z = 3$
LHS RHS
$ 3x + 5y - 4z \\[3ex] 3(1) + 5(2) - 4(3) \\[3ex] 3 + 10 - 12 \\[3ex] 1 $ 1
$ 6x - 3y - 5z \\[3ex] 6(1) - 3(2) - 5(3) \\[3ex] 6 - 6 - 15 \\[3ex] -15 $ −15
$ -2x + 2y + z \\[3ex] -2(1) + 2(2) + 3 \\[3ex] -2 + 4 + 3 \\[3ex] 5 $ 5

$ Let: \\[3ex] \text{Numerator for}\;x = Matrix\;A \\[3ex] \text{Numerator for}\;y = Matrix\;B \\[3ex] \text{Numerator for}\;z = Matrix\;C \\[3ex] \text{Denominator} = Matrix\;D \\[3ex] $ Calculator 1a

Calculator 1b

Calculator 1c

Calculator 1d

Calculator 1e

Calculator 1f
(2.)


(3.)


(4.)


(5.)


(6.)


(7.)


(8.)


(9.)


(10.)


(11.)


(12.)


(13.)


(14.)


(15.)


(16.)


(17.)


(18.)


(19.)


(20.)






Top




(21.)


(22.)


(23.)


(24.)


(25.)


(26.)


(27.)


(28.)


(29.)


(30.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.